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Abstract

Electric and magnetic fields in the (10−4-1.0) Hz band were monitored at two sites ad-

jacent to the San Andreas Fault near Parkfield and Hollister, California. Observed fields

typically comprise natural magnetotelluric fields, with cultural and instrument noise. A

data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake,

was analyzed to determine if anomalous electric or magnetic fields, or changes in ground

conductivity, occurred before the earthquake. The data were edited, removing intervals of

instrument malfunction, leaving 875 days left in the four-year period. Frequent, local spike-

like disturbances were removed. The distribution of these spikes was not biased around the

time of the earthquake. Signal to noise ratios, estimated via magnetotelluric processing

techniques, provided an index of data quality. Plots of signal and noise amplitude spectra,

showed the behavior of the ULF fields to be remarkably constant over the period of analy-

sis. From these first-order plots, it is clear that most of the recorded energy is coherent over

the spatial extent of the array. Three main statistical techniques were employed to separate

local anomalous electrical or magnetic fields from the dominant coherent natural fields:

transfer function estimates between components at each site were employed to subtract the

dominant field, and look deeper at the ’residual’ fields; the data were decomposed into prin-

cipal components to identif y linear combinations of array channels, which are maximally

uncorrelated; the technique of canonical coherences was employed to distinguish anoma-

lous fields which are spatially broad from anomalies which occur at a single site only, and

furthermore to distinguish anomalies which are presen t in both the electric and magnetic
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fields form those which are present in only one field type. Standard remote reference ap-

parent resistivity estimate s were generated daily at Parkfield. Most of the variation was

observed to be seasonal, and frequency independent, suggesting a local seasonal distortion

effect. Once corrected for distortion, nearly all of the variability in the apparent resistiv-

ity was removed. In all cases, high levels o f sensitivity to subtle electromagnetic effects

were demonstrated, but no effects which can be described as precursors to the Parkfield

earthquake were found.
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Foreword

There have been many reports of electromagnetic phenomena associated with earth-

quakes. There is a 30+ year history here at Berkeley of researchers who have become

absorbed by the question: Are there electromagnetic phenomena, or phenomena detectable

by electrical, magnetic, or electromagnetic instruments which occur prior to seismic ac-

tivity? The generally mysterious nature of electromagnetic fields to the layperson, has

coupled with the destructive power associated with great earthquakes to generate a body of

literature and anecdotal evidence in which it is almost impossible to distinguish scientific

observation from lore. Thus, a Berkeley experiment was initiated to accurately measure

natural fields at an array of stations over a long period of time in which it would be clear

if significant electromagnetic signals occurred above the noise level of the instruments in

association with seismic events.
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Chapter 1

Introduction

1.1 Introduction

Many investigators have suggested that observations of unusual geoelectromagnetic behav-

ior are associated with seismic activity, e.g.Corwin and Morrison(1977),Fraser-Smith et

al. (1990), Molchanov et al. (1992), Uyeda et al. (2000), Varotsos and Alexopoulos

(1984). For a more extensive list, see references inPulinets and Boyarchuk(2004),Park

et al. (1993), andJohnston(1989,1997). Geller (2006, 1996) draws attention to a lack

of consensus in the geophysical community on the validity and scientific merit of these

reports. The reported anomalies take on a variety of forms: variations in quasistatic elec-

tric fields, self-potential, ULF magnetic fields, alternating electric fields in the ULF, VLF
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or ELF bands, and variations in ground resistivity to name a few. Many, if not most, of

these reports seem inconsistent in the reported time interval between the anomaly and the

earthquake, the “time-frequency character” of the field perturbation (sharp boxcar-like sig-

nals in electric field vs. general increase in spectral level of magnetic field in a particular

frequency band), and/or the duration of the claimed anomalies. In general, the entire effort

aimed at observing these sorts of phenomena suffers from a lack of multiple earthquake ob-

servations to demonstrate a consistent relationship between the observed phenomena and

the earthquake. Past efforts have typically been of short duration making it difficult to tell

whether an anomalous field was truly a unique precursor or whether such anomalies happen

at many times when there is no significant seismic activity.

In 1991, an NSF-sponsored conference aimed at defining some guidelines for the design

of experiments that could obtain credible results [Park et al., 1993] was held at Lake Ar-

rowhead, California. A conclusion of the workshop was that there did seem to be some

credible observations of precursory effects in ULF magnetic fields, quasi-static DC electric

fields, and in ground resistivity.

Three caveats regarding the observations were acknowledged:

a) The cited phenomena are not clear outliers against an objective statistical criterion;

b) The instrument calibrations are not made with respect to some absolute standard, and/or

instrument observations are published without citing system transfer functions and noise
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level analysis;

c) The observations cannot be shown to fit into accepted physical models, and are without

plausible physical explanation.

In 1995, Berkeley researchers installed two EM monitoring sites on the San Andreas Fault

(SAF) near Parkfield and Hollister, California, shown in Figure 2.1. The Parkfield segment

of the SAF was chosen for a focused prediction experiment on the basis of repeating M 6

earthquakes, with a recurrence interval of approximately 22 years [Bakun and McEvilly,

1984]. By 1995, the Parkfield earthquake was late, but the probability of recurrence was

high, so it seemed a good place for the EM monitoring experiment. The site was also chosen

for the availability of other geophysical data and experiments relating to the dynamics of

the SAF in this location and the role of water in the seismogenic zone [e.g.Nadeau and

McEvilly, 1997]. In fact the expected Parkfield earthquake did not occur until September

28, 2004, (Mw6), by which time the array had been in continuous operation for nine years

It continues to function as of this writing. The Parkfield segment has also been monitored

with a long dipole array for long period (>300sec) electric fields since 1988 [Park et al.,

1993, 2007].

The Berkeley EM monitoring array was designed to monitor general fluctuations in the

spectra of natural fields in the 10−4 to 10Hz band, changes in ground resistivity through the

magnetotelluric tensor impedance, and variations in the amplitude and phase of of intersite

transfer functions. The array could also be used to search for anomalous variations in
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quasi-DC electric field as reported byVarotsos(e.g. 1984, 1991). However, we found

so many anomalous transients in the electric field measurements associated with as yet

not understood electrode phenomena that we have not attempted a thorough study of the

electric fields. This dissertation reports on a number of different analyses conducted on

measurements of electric and magnetic fields in the 10−4 to 10Hz band. The array had

three key objectives:

a) To provide a continuous data source from which to conduct analysis of intersite transfer

functions (TFs);

b) To provide continuous measurements of apparent resistivity using robust MT remote

reference processing techniques [Egbert and Booker, 1986;Egbert, 1997]; and,

c) To archive the MT data stream in a publicly accessible storage medium for the use of

other researchers.

The idea behind calculating intersite transfer functions was to use the TF obtained during a

period known to be free of earthquake phenomena to predict the fields at one site from the

fields at another. Ideally, the difference between the observed and predicted fields should be

the effective noise level of the measurement system. Anomalous signals at a site associated

with seismogenic events nearby should then stand out above system noise as opposed to

being buried in the natural field signal, as they would be with single site data. Residual

fields above the instrument noise levels represent signals which do not satisfy the incident
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plane wave assumption of the MT source-field – solar wind-magnetosphere interactions, or

the earth-ionosphere resonance cavity [Berdichevsky and Dmitriev, 2002] – as these sorts

of fields would be detected at both sites. To our knowledge, no long term monitoring of

EM remote-reference residuals along a fault zone have been published to date. Long term

monitoring of apparent resistivity has been done passively in the past by [Eisel and Egbert,

2002], and using current injection [Zhao and Qian, 1992]. We employ analysis similar

to Eisel and Egbert(2002) . The archiving of the data allows the site to act as a remote

reference for other researchers, and validate background fields they may observe.

The estimation of the transfer function between sites is biased by uncorrelated noise at

either site. In principle, an unbiased estimate can be obtained using a third site which is

presumed to see the same naturally occurring fields, but where noise is uncorrelated with

the first two. Unfortunately, due to budget and land permit considerations we were only

able to obtain data at three sites simultaneously during the one month period of February,

1999.

We were able to perform long term unbiased impedance (E/H) measurements at each site

in the array and to thus monitor the changes in apparent resistivity and impedance phase as

a function of time.

Besides these primary purposes, several other measurements and indices can be derived

from the long period time series, including MA indices [Bernardi et al., 1989], principal

components [Egbert et al., 2000] and canonical coherences [Brillinger, 1975;Lyubushin,
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1998]. Finally, the archiving allows observed field amplitudes to be easily cross validated

against other auxiliary datasets, such as global geomagnetic activity indices, or local geo-

physical instruments. The public availability of the data enable any interested researchers

to perform their own experiments and signal processing with the array data. The sections

on SI-unit conversions and array fidelity measures may be helpful to such researchers.
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Chapter 2

Sites and Instrumentation

The specific locations of the sites were chosen in anticipation of the next Mw 6.0 earth-

quake which seems to be a phenomenon repeating on a time scale of 22 years [Bakun

and McEvilly, 1984]. In 1996, the array began collecting data. The locations of the sites,

separated by 120 km, are shown in Figure 2.1.

Site Latitude Longitude Elev(m) Date Location
PKD 35.945171 -120.541603 583 1999/02/05- Parkfield
PKD1 35.8894 -120.426109 431.6 1995/06/06 - 1999/03/08 Parkfield
SAO 36.76403 -121.447722 317.2 1995/08/15 Hollister

Table 2.1: Specific site locations and dates of operation

At each observatory, three orthogonal induction coils (model EMI BF-4) measure the time

varying magnetic field, and two 100m long electrodes measure the electric field in the

surface plane. The horizontal coils are buried in trenches 0.5m deep, and the vertical coils
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Figure 2.1: Map illustrating the location of operational (filled squares) and closed (grey
squares) MT sites in central California.
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Figure 2.2: Schematic diagram of an EM observatory with two sets of electric dipoles.
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are in drilled holes approximately 2m deep. The electrodes are Pb-PbCl non-polarizing

type, and are placed in 3m holes with moist bentonite packing to keep contact resistance

to a minimum. The entire system is powered by 12V batteries with constant trickle charge

provided by on site solar cells. The measurements are filtered onboard the coils for a stable

response over several decades of period. The dipole data are preprocessed with an Electric

Fields Signal Conditioner (EFSC). The EFSC consists of a preamplifier, optical isolator,

and main amplifier in series, with an optional high pass filter. The data are then digitized

by 24-bit Quanterra digitizers (Q935 at PKD and Q4120 at SAO), at a sampling rate of

40Hz. Time synchronization is done via Global Positioning System (GPS). The data are

then telemetered in packets to the Northern California Earthquake Data Center (NCEDC)

where they are archived(www.ncedc.org). A schematic diagram of the site instrumentation

is provided in Figure 2.2. At PKD, an added independent pair of 200m dipoles collect

data alongside the 100m pair. This is useful for recognizing when an electrode is creating

voltage noise, for checking linearity of measurements, and is required should one want to

run VAN method analysis [Varotsos and Lazaridou, 1991]. For the purposes of this paper

we refer to the eight primary array channels as the horizontal magnetic coils at each site,

together with the 100m electrodes at both sites. The electrode data preamplifier can be set

to 10, 20, 30 or 40dB, where each 10dB of gain corresponds to
√

10 gain in voltage. Gain

settings for the preamplifiers are recorded, and each electrical channel is divided through

by 3.16, 10, or 31.6 where appropriate (the 40dB setting was never used). Figure 2.3 shows

all electrodes and coils, where relative lengths of electrodes are accurate, as are cardinal
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orientations of all sensors.
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Figure 2.3: Schematic diagram of the EM observatory, showing the azimuths of the elec-
trodes and coils. Electrode lengths are shown to scale, while the coils are scaled to be
visible.
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Chapter 3

Data Selection and Cleaning

The time window of analysis for this study spans four years, a total of 1461 days. The

data examined, unless otherwise stated, were sampled at 1Hz. The raw data are stored as

8x86400 point (day-long) arrays. This is a natural window to use as ULF fields exhibit

diurnal behavior. These raw data are stored in units of machine counts at the datalogger.

Before embarking upon the main data processing and interpretation, a data selection exer-

cise is undertaken to ensure that the interpreted time series are relevant to this study. Most

data processing will be reserved for days on which all eight channels in the array are “not

severely corrupted”. There are many reasons a channel may fail to record physical data,

most of which can be lumped under the umbrella term "lack of maintenance". Vandalism,

extreme weather, and other unknown factors can also have adverse affects on data acqui-
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sition. A point in time is contaminated by missing data if there is no record for one or

more channels at that sample. If more than ten percent of the time samples for a given day

are contaminated by missing data, then that day is removed from the analysis. 61 days are

flagged because of these large gaps in the data stream. An additional 16 days are flagged

because EFSCs were not installed at SAO (72-87, 2002). The remaining 1376 days are all

considered as candidates for analysis.

3.1 Simultaneity of ULF fields and criteria for omitting

data

The science of magnetotellurics (MT) relies upon the recording of tiny variations in the

earth’s magnetic field. MT data interpretation is predicated on the assumption that the

micropulsations of the earth’s magnetic field are horizontally polarized, and hence spa-

tially uniform over 100’s of km (at least at mid-latitudes). One expects that, to first order,

sensors at different sites ought to be strongly correlated. The magnetic fields should be

nearly identical (neglecting local noise and instrument malfunctions), and once corrected

for individual channel gains, the electric fields should also correlate well. The electric field

amplitudes and direction, however, will differ by a scale factor which depends on the local

conductivity structure.
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Figure 3.1: A plot of mean-subtracted array data for a full day in 2004. Electric fields are
shown in red and magnetic fields in blue. Plots alternate between PKD and SAO at each
field Polarity. Y values are in counts with axis limits shown to the left. The vertical lines
mark the domain boundaries of Figure 3.2.
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The strongly correlated behavior between magnetic channels is a property of the approx-

imate uniformity of the source process over the earth, and the correlations of the electric

channels is justified by the physics of Maxwell’s equations, specifically Faraday’s law. This

uniformity of source fields extends over a broad range of frequencies, and as such, the cor-

relations between channels should manifest over a variety of time scales. Figure 3.1 shows

this correlation across all array channels. Note the similarity in the field variations, as well

as the identical scaling of magnetic fields, compared to the scale factor difference in the

electric fields. This similarity holds at higher frequencies, as shown by repeatedly zooming

in on the data in Figures 3.2, 3.3, and 3.4.

The coherence of the fields can be clearly seen to extend from hours down to seconds in

period. It is this inherent similarity in the fields which is exploited to identify windows in

time when the array is not functioning correctly. Bad data is of several different time scales:

whole days missing, parts of days or only some channels missing, and spikes or severe

contamination of local origin. These are systematically omitted, filled in, or despiked, as

described below. A useful statistic for evaluating the system fidelity is the variance of the

data over small time windows. With the electric field data scaled as V/m and the magnetic

field data still in instrument counts (effectively dB/dt), each day of raw data is partitioned

into 450 windows. Each window has length 256, and there is a 64 point overlap from one

window to the next. The 450th window is taken as the final 256 points in the day to avoid

zero padding.
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Figure 3.2: Mean-subtracted magnetic array data for one hour of the day shown in Figure
3.1. Plots alternate between PKD and SAO at each field polarity. The vertical lines mark
the domain boundaries of Figure 3.3.
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Figure 3.3: Mean-subtracted time series of y-polarity magnetic channels for two minutes
within the hour shown in Figure 3.2. The vertical lines mark the domain boundaries of
Figure 3.4

Figure 3.4: Mean-subtracted time series of y-polarity magnetic channels for 5 seconds
within the window shown in Figure 3.3.
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The ith sensor Si is then represented as a time series of window-variancesSi(t), where the

index t increments by one for each 256-second time window. By compressing the time

series into this variance-window format, the ratios of the time series (taken bin by bin) can

be examined for deviant field behaviour. Formally, for two sensors represented asSi(t),

andSj (t), we calculate the log-variance-ratio time seriesVS1,S2(t), defined for t centered

in a 256-point window as log10(var(Si(t))/var(Sj (t))). Days where the 90th percentile of

VS1,S2(t) deviated by more than 1 from its median value were flagged as unusable. This

translates to removing days where more than ten percent of the data were off by more

than a factor of ten from their well-behaved values. The median values cited above are

calculated on blocks of days where instruments are unchanged. Combinations of Si , Sj are

chosen to be sister channels at the remote site, i.e. (Hx at PKD together with Hx at SAO)

or (Ey at PKD, with Ey at SAO) etc.

The flagged days (a total of 586 of them) were inspected by eye to confirm that one or more

sensors were indeed malfunctioning. An example of theVS1,S2(t) is shown in Figure 3.5.

The extreme data, with absolute y-values greater than 104, correspond to times when one

site was not recording. Summary inspection of the raw data time series associated with

these outliers shows a diurnal drift in one sensor on the order of around 200 datalogger

machine counts (Boltzmann kT noise), with the digitization noise superimposed.

Previously, we had employed a code developed by Gary Egbert to obtain daily estimates

of signal to noise ratio (SNR) for each instrument. Details of this code are laid out in the
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Figure 3.5: Variance ratios plotted for for each of the 1379 candidate days for analysis.
This is the ratio of Hx at PKD to Hx at SAO.

next section. Sections of data where the code failed to converge, or returned SNR values

less than two, had been classed as bad data and were removed from the analysis. This

removed some severely corrupted data, but left many sections of poor data which had to be

edited by hand. The 586 flagged days are a proper subset of the more than 800 days which

were previously flagged by hand-selection, and a proper subset of the 678 days which were

flagged by using the SNR criterion applied to Egbert’s code. These days include days when

the data logger was not working, or there was a problem with the power supply to the BFPS,

or the amplifiers in the EFSC. Figures 3.6 and 3.7 depict a sample sensor, Hy at SAO, in

terms of a histogram of its log variance ratio time series, before and after this initial data

elimination phase. It is clear that there are two extra distributions in the data, which have
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been identified by inspection as corrupt data.

Figure 3.6: A histogram showing the distribution of the log10(window-variance time series)
for Hx at SAO prior to the automated data rejection.

Though there are many flagged windows in the remaining 802 days, there are not enough

flags to cross the threshold for eliminating the day’s data. The remaining days are treated

with a slightly more refined data rejection criterion. These remaining days are represented

by VS1,S2(t), for four pairings of S1, S2 corresponding to each channel at PKD paired with

its sister channel at SAO. For each day, the time seriesVS1,S2(t) is median subtracted, and

scanned for outliers according to the following criteria: If a realization of the median sub-

tractedVS1,S2 has absolute value greater thanr one-sidedα-trimmed standard deviations,
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Figure 3.7: A histogram showing the distribution of the log10(window-variance time series)
for Hx at SAO following the automated data rejection.
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the window is flagged as needing replacement for the channel in which more energy was

observed. The one-sidedα-trimmed standard deviation is defined as the standard devia-

tion of the set of all elements ofVS1,S2(t) which are below the (1-α)th percentile. Using

this measure prevents a few very large spikes from driving the standard deviation up so

high that smaller spikes are not caught. Practically speaking, a value of r=5 works well for

magnetic fields, and r=6 for electrics.

The described algorithm only identifies windows where the variance ratio between two

channels is anomalous. It is another matter to decide which of the two channels in the

ratio is the non-physical data. Because most nonphysical data tend to be spikes and sharp

offsets, the channel with more energy is selected by default as the offending data. There is,

however, a certain pathological case which occurred repeatedly during the period Decem-

ber 2003 through March 2004, marked by a power failure to the coil amplifiers at SAO.

There are twin power supplies running to the coils, which take turns carrying the load,

switching every few hours according to a program. When the faulty power supply was

connected, the coils at SAO showed anomalously small variances. Consequently, the spike

identification algorithm misidentified the large intersite variance ratios as "spikey" data at

PKD, as opposed to malfunctioning amplifiers at SAO. Data suffering from this problem

have two properties. First, the underpowered amplifiers affect the datastream for at least 20

minutes, and second, both coils at SAO are affected simultaneously. Because of these facts,

the magnetic variance ratio time series from December 2003 to March 2004 were searched

for contiguous segments of five or more flags, simultaneously present in both PKD coils.
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It turns out that this simple search identified all the pathological cases, and only the patho-

logical cases. The data replacement flags were then moved from PKD windows to SAO

windows for these times. More sophisticated and general searches can be added for future

data. For example, if the BFPS power problem needs to be more broadly searched for, one

could use the approximate stationarity of Hx/(d(Ey)/dt) and look for times this quantity

drops at SAO, but remains normal at PKD.

3.2 Time domain despiking and treatment of small dis-

continuities

The variance ratio statistic described above is by no means a complete noise-spike identifi-

cation algorithm, nor are we guaranteed that the flagged windows are corrupted by spikes.

Nevertheless, it does identify large spikes successfully. The despiking algorithm described

below does not require that a true spike be present in the data, only that a window in chan-

nel i has been flagged as being non-physical. Flagged windows are removed from the data

entirely, and as such become gaps in the data stream. Thus, a single algorithm can treat

spikey data together with actual gaps in the data stream. The flagged window is then re-

placed by a window of physically plausible data, which is spliced into the observed time

series in a manner which attenuates inherent offsets at the boundary between the observed

and predicted data. A description of the calculation of plausible data and the method of
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splicing which have been applied to the dataset is as follows: Consider a 256-point time

window for which one or more channels have been flagged. We focus on theith flagged data

channel. The physically plausible datadi(t), hereafter denotedd(t), is calculated by Wiener

filtering the non-flagged channels to obtain an approximation of the flagged channels. That

is d=Ψ j?m j , where the double index denotes summation over all channels of input data

m j , convolved with Wiener filtersΨ j . The input channelsm j are mean subtracted prior

to all calculations, and sod(t) will be plausible in its variations, but offset by a static shift

which will be accounted for below. Formally, to calculate plausible data for a given time

window, channels are separated into two disjoint sets. One setF is a list of channels which

have been flagged, and the other setF ′ is a list of all other channels in the array. For each

data channel di in F , a set of K=#F N-point (N=13) Weiner filters are calculated which

predict the data in channeli using the data in all channels ofF ′. The training data used to

calculate the Wiener filter coefficients is a two hour segment of unflagged data which has

the following three properties:

1. The time window of the training data spans the time of dayt of the flagged window;

2. The training data are from the same block as the flagged data (i.e. instruments are

identical); and 3. The Ap (geomagnetic activity) index of the day from which the training

data are selected is as close to the Ap index of the day of the flagged window as possible

while respecting conditions one and two.

Let dtrg(t) be the training data from channeli, stored as a column vector. Then letm jtrg(t)
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denote the training data from the jth channel inF ′, j=1..K, stored as a row vector. Then the

prediction filters,Ψ j are found by solving the system of equations

dtrg(t) =
K

∑
k=1

(
N

∑
n=1

(Ψk(n)mktrg(t−
N−1

2
+n))) (3.1)

The inner summation corresponds to the inner product of thekth Weiner filter with N points

of thekth predictor channel centered att. Denoting the vector made of N-points of predictor

channelj, centered att asmt,N
k we find

dtrg(t) =
K

∑
k=1

< Ψk,m
t,N
k > (3.2)

Translating the above expression into linear algebra with a convolution matrix we have:
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d1+N−1
2

d2+N−1
2

...

dT−N−1
2


=



m1,1 . . . m1,N . . . . . . . . . mK,1 . . . mK,N

m1,2 . . . m1,N+1 . . . . . . . . . mK,2 . . . mK,N+1

...
...

...

m1,2 . . . m1,T−N . . . . . . . . . mK,T−N . . . mK,T−N





ψ1,1

...

ψ1,N

...

...

...

ψK,1

...

ψK,N


(3.3)

We solve the above equation whered andm are made of training data for the KxN Wiener

filter coefficientsΨ. Where the subscripts i,j, on the m denote thejth element of theith

channel of training data indexed byF ′. Because the training data are unflagged, ordinary

least squares is sufficient to solve the problem, i.e we needn’t worry about damped least

squares or outliers.

Note that the input data matrix M has the form of a concatenation of K convolution matrices

each having N columns. When M is constructed of input time series having length T we

do not recover T points ofd, losing (N-1)/2 points on either side of the data time series.

This is because estimates ofd(t) when the filter is ’entering or leaving’ the time seriesm
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are rejected.

Once an appropriateΨ has been obtained,d(t) is predicted using Equation 3.3 but this

time with Ψ as a known input, and theM matrix replaced by the observed data in the time

window needing repair on channeli. The resultingd is the output plausible data. Here,

enough padding is applied to them j so that the resultantdplaus has width 1.1*T, with 5%

overlap of predicted data to either side of the gap. At this point it is time to replace the gap.

There are five regions in time domain that we must consider separately:Ri , i=1..5. These

are shown, partitioned by vertical lines, in Figure 3.8.

In each region, we adjust the data to be some combination of the predicted data and the

observed data.

r1(t) = dobs(t) ∀t ∈R1 (3.4)

r2(t) = [(1−Tdown)(dobs− d̄obs)+Tupdplaus]∀t ∈R2 (3.5)

r3(t) = dplaus ∀t ∈R3 (3.6)

r4(t) = [Tup(dobs− d̄obs)+(1−Tdown)dplaus] ∀t ∈R4 (3.7)

r5(t) = dplaus(t) ∀t ∈R5 (3.8)

The diagonal matrices Tdown and Tup correspond to tapering matrices, which upweight the
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observed data far form the window, and downweight the prediction, by inversely varying

the weights on the observed data and plausible data as the window edge approaches. For-

mally,

Tup(i,i) = cos(
−π(i−N)

(2N)
) Tdown= I −Tup (3.9)

Finally the time series in the five regions ri are shifted so that they are free from sharp

offsets at each boundary, and concatenated into a cleaned data vectordnew. To each of

regions 2,3,4 is added a shift which is the difference in the median values of r1 and r2, and

to r5 is added a shift which is the difference in the median values of r4 and r5, where only

the 5 points nearest the boundary are considered in the median calculation.

Thus, a whole day’s data channel is finally replaced bydnew

dnew(t) = [r1 | r2 +s12 | r3 +s12 | r4 +s12 | r5 +s45] (3.10)

where

s1,2 = median{r1(t) | junction− t < 5)}−median{r2(t) | junction− t < 5)} (3.11)

s4,5 = median{r4(t) | junction− t < 5)}−median{r5(t) | junction− t < 5)} (3.12)
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A sample result of the despiking is shown in Figure 3.8.

Figure 3.8: An example of the despiking routine results. The recorded data is in black,
and the plausible data calculated by the method outlined in the text is shown in red. Black
vertical lines bound the clipped section (r3) and the regions bounded between the cyan and
black vertical lines arer2 andr4 (the splice regions).

The shift between r4 and r5 is especially important to incorporate when there are steps in

the data, as for example in Figure 3.9.

A total of 3904 windows are flagged, and the distribution of these flags in time is shown as

a sum over all channels. We note that there do not seem to be any periods of time which

are much more contaminated than any other periods. In other words, there is no time which

stands out as being especially prone to spikes.
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Figure 3.9: An example of the despiking routine results. The recorded data is in black, and
plausible data calculated by the method outlined in the text is shown in red. Black vertical
lines bound the clipped section (r3) and the regions bounded between the cyan and black
vertical lines arer2 andr4 (the splice regions).
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Figure 3.10: Distribution of flagged windows for all channels vs. time. The y axis shows
the number of spikes on a given day, while the x axis is an index of the days. The 95th
percentile of these points is shown in red.
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Chapter 4

Signal and Noise

Now that large, clearly non-physical signals have been removed from the data, it is time

to move to a more sophisticated measure of array fidelity in order to confirm times when

the array can be truly considered to be functioning properly. Such a metric ought to be fre-

quency dependent as both the character and strength of the ambient fields tend to vary with

frequency. The data are transformed into the spectral domain, and a variant of Egbert’s

RMEV (Robust Multiple Channel errors in Variables) [Egbert, 1997; Eisel and Egbert,

2002] frequency domain cleaning algorithm is employed to generate estimates of signal

strength and incoherent noise power for each channel in each of several frequency bands.

By doing this, we can express the observed fields in terms of signal to noise ratio. Thus,

should any anomalous fields be observed, they can be quantified in terms of their signif-

icance above the instrument noise level. This sort of noise level analysis is seldom done
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in the reports of signals associated with earthquakes. A byproduct of these calculations

are daily averaged estimates of spectral matrices which will be exploited to explore the

behaviour of ULF fields.

4.1 Conversion of data to SI unit Fourier Coefficients

For each instrument, and each day, we Fourier transform the data in order to obtain a

time-series of Fourier coefficients (FCs). Hamming windows of 256 points, with 64 point

overlap are applied in time domain. Although no band averaging is applied until after the

RMEV routine is run, the bands are chosen at the beginning of the process so that extra

FCs need not be stored or operated on. Long period Fourier coefficients are obtained by

repeatedly decimating the data by a factor of two and reapplying the same windowing

scheme. This results in six decimation levels, spanning periods from around 3 to 1500s.

Windows are chosen to have a constant Q =fcenter/fbinwidth. A total of 32 distinct bands are

calculated. The resulting time series of the Fourier-transform and decimation routine have

lengths 449, 224, 112, 55 27 and 13, for decimation levels one through six, respectively.

During the FC calculation, manufacturer’s instrument transfer functions are used to correct

for amplifiers in EFSCs and the frequency dependent gains of the coils, so that FC time

series data use the standard units of magnetotelluric data: mV/km/
√

Hz for electrodes, and

nT/
√

Hz for coils.
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Time domain data in units of counts are first scaled into units of Volts by using the conver-

sion factors stored at the NCEDC. This accounts for the variation in the exact conversion

factors from channel to channel of a single data logger, and from datalogger to datalogger.

Nominally, the conversion is on the order of 400000 counts per Volt. The voltages observed

across the electrodes are then corrected for the gain settings on the EFSCs, and normalized

by the electrode lengths so they are expressed in units of V/m.

Ei,mV/km(t) = 106 Eraw(t)
(cpvi)(gi)(l i)

(4.1)

where cpvi is the digitization factor, gi the EFSC gain setting, and li the length, all referring

to the ith electrode. The factor of 106 converts V/m to mV/km. For coils:

H̃ i,V(t) =
Hraw(t)
(cpvi)

(4.2)

The data are then windowed and FFT-ed which is equivalent to:

Ẽi(ω) =
N

∑
n=1

Eraw,i(t)e−
j2π(ω−1)(n−1)

N (4.3)

and for coils

H̃ i(ω) =
N

∑
n=1

H i,V(t)e−
j2π(ω−1)(n−1)

N (4.4)



36

The time series of Fourier coefficients is then scaled as:

H̃ i,scl(ω) =

√
2dt

1.36N
H̃ i(ω)
0.54

(4.5)

Ẽi,SI(ω) =

√
2dt

1.36N
Ẽi(ω)
0.54

(4.6)

Finally, the magnetic data are scaled by the appropriate BF-4 transfer function from the

manufacturer’s calibration records. This corresponds to point by point dividing the Fourier

coefficients at each frequency by the calibration value at that frequency from the plot below:

Figure 4.1: Manufacturer’s calibration curves for coil BF4-9204

Referring to the instrument transfer function as ITF we can express the coil data in SI units

by finally applying:
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H̃ i,SI(ω) =
H̃(ω)i,scl

ITF(ω)
(4.7)

Scaling the data like this results in the squared amplitude of the FCs corresponding to a true

SI unit one-sided periodogram, with units of nT2/Hz, and (mV/km)2/Hz. The scale factors

in equations 4.6 and 4.5 of 1.36 and 0.54 correspond to normalizing the data to account for

spectral leakage in equivalent noise bandwidth and processing gain, respectively (Harris

1978). The
√

2 Parseval normalization allows the one-sided power spectrum to reflect the

total energy in the time series.

A few amplitude spectra were estimated using these calibration factors and compared to

calculations made by industry-standard codes used at Schlumberger [Cuevas, personal

communication]. The comparison shown in Figure 4.2 reveals a reasonably good agree-

ment. Note the two spectral peaks centered at approximately 8 and 14 Hz. These are the

first and second Schumann resonances. These phenomena are attributed to standing waves

set up in the spherically concentric capacitor whose conductive boundaries are the iono-

sphere and the solid earth. The source of the resonance are the bolts of intracloud and

cloud-to-ground lightning continuously crackling at an average rate of between 40 and 50

bolts per second [Christian et al.2003].

Because the instruments are swapped out from time to time, and because previous analysis

of our data has shown orders-of-magnitude offsets coincident with these swaps (ex. Figure
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Figure 4.2: High resolution amplitude spectra for day 272, 2004. Two hours of data from
0000-0200hrs UT calculated using the above method (red) and using an industry standard
code (black).
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4.3), an exercise is performed to determine how well the array observations compare to one

another over the long term using the codes created for this study. By selecting a two-hour

block of data at the same time each night (2-4am PST), 40Hz magnetic data are downloaded

for the days when this two-hour window was not flagged by the despiker. The magnetic

channels are then transformed according to Equation 4.5. The first Schumann amplitude

is calculated by averaging the amplitudes of the Fourier coefficients between [ 7.413 and

8.2224] Hz. Long term plots of the stability of these indices are shown in Figure 4.4

The time series is fairly stable and the values are in agreement with the theoretical val-

ues predicted byHeckman et al.(around 0.2(pT)2/Hz for the NS component (Hy) or≈

0.45 pT/
√

Hz). There is a clear seasonal variability with peaks in the summer months (JJ

on the Figure axes) and lows in the winter months (DJ on Figure axes). This reflects the

total amount of thunderstorm activity cycling through the year. Once the Fourier coeffi-

cients have been calculated and stored for each decimation level, the data are ready to be

processed by a variant on the RMEV method proposed by Egbert (1997, 2002).

Figure 4.5 shows that the offsets in the field ratios are likely related to changes in site

configuration. No maintenance records are available after March 2004. These plots show

that changes in the absolute field values are reliable only to within around 10%. In order to

see finer-scale variability, we express the data in terms of signal to noise ratio in the next

section.
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Figure 4.3: Long-term magnetic field amplitudes for 4.7s period data calculated in 2005
using standard software at the BSL. Logarithm of amplitude is shown because the large
dynamic range renders certain tracts of data invisible on a linear scale.
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Figure 4.4: Seasonal variability of the Schumann resonances
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Figure 4.5: Intersite horizontal magnetic field amplitude ratios. Green vertical lines repre-
sent times when BFPS were exchanged, and the black lines indicate when Hx Coils were
replaced at SAO.
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4.2 Robust estimation of the SDM

Following is a description of the RMEV code implemented to process the spectral domain

data. The raw data for this method are the daily generated vector-valued time series of

Fourier coefficients, with one row for each channel, and one time index for each partially

overlapping 256 point window. Every frequency bin within each decimation level is pro-

cessed independently for each day. Thus, we choose an arbitrary but fixed combination of

these three parameters (day, decimation level, and frequency bin) and begin with a vector

valued time seriesX(t) whereX ∈M(C)8,T . T is the number of windows in the decimation

level. For a detailed description of robust estimation of the covariance matrix (hereafter

referred to as the spectral density matrix or SDM), the reader is referred toEgbert(1997),

and references therein. The SDM estimate is an iterative procedure of down-weighting

outliers in the FC time series. Outliers are alternately downweighted in all channels, and

then in individual channels. Outliers in all channels are treated by the affinely invariant

approach Huber (1981), which essentially involves sphering the data, followed by down-

weighting observations (FC vectors corresponding to a single time window) which defy a

Gaussian, spherically symmetric statistical model by more than some predefined number

of standard deviations. After downweighting outlier in all channels equally, the method

then re-estimates the data vectors by downweighting outliers in individual channels. This

is done by approximating each channel’s FC time series by a least squares fit to all other

array channels, and then downweighting the FCs in time bins which have residuals greater
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than some number of standard deviations. These residual variances serve as estimates of

channel-noise variances, although they are imperfect estimates, as they also incorporate

noise from other channels. This contamination is reduced by an updating step which de-

couples the mixed incoherent channel noises from one another.

The SDM together with these estimates of incoherent noise serve as our basic dataset for a

discussion of signal and incoherent noise. The structure and properties of the SDM will be

discussed later. For now it is sufficient to note that with outlier-free data, the SDM is simply

the expected value of the outer product of the data vectors, i.e.: The SDMS is calculated

from X as

S=
XX∗

T
(4.8)

and as a trivial corollary, the ith diagonal element is simply the variance of the ith channel,

or the autopower of the ith sensor.

STEP 1.

Downweight outliers equally in all directions. The data matrixX is preconditioned by the

transformation

Y = DUX (4.9)

where the rows ofY are uncorrelated, and of unit variance. HereU is defined by the eigen-
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value decomposition ofS=UΛU∗ andD is the diagonal matrix whose non-zero elements

are the square roots of the non zero elements ofΛ. i.e.:

Di,i =
1√
Λi,i

(4.10)

ConvertingY into a single time seriesR whose elements are the norms of the columns of

Y, the elements ofR which deviate by more than some fixed number of standard deviations

from the median are downweighted by a factor of 0.5.

STEP 2.

An initial estimate of incoherent noise variance is determined by predicting each channel

by all the others. To predict the ith row of X denoted by Xi,: we employ the reduced matrix

X∼i,: where the∼i denotes removal of the ith row. Thus by basic regression we obtain

X̃ i,: = GX∼i,: (4.11)

where

G = (X i,:)(X∼i,:)(X∼i,:X
∗
∼i,:)

−1 (4.12)

and X̃ is the predicted time series. The residual time series for the ith channel is simply

thenX i,:- X̃ i,:. The RMS of this residual time series is taken as an initial estimate of the
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incoherent noise variance of the ith channel. When residual time series elements deviate

by more than 3 form the 0.01α-trimmed standard deviations, the data in channeli are

downweighted by a factor 0.7

STEP 3.

The incoherent noise variances are decoupled. Following the work of Egbert (1997), we

note that even if some channels were completely noise-free, the residual as defined above

would contain some noise, because the predicted time series is a linear combination of other

channels which do have some noise in them. Extending this argument to the case where a

channel has some noise, it is clear that by estimating the noise by the residual RMS as in

step two, one will consistently overestimate the noise. Because each channel’s contribution

to the residual noise is incoherent with all other channels, it will not cancel when summed,

but rather, will grow as in a random walk.

Formally, consider a channel Xi(t), approximated as a linear combination of N-1 other

channels, where the jth channel is represented as Xj+ε j , whereε j is the ’true incoherent

noise’ in the jth predictor channel. When SNR>2, we can approximate the residual vari-

ancer i as a linear combination of the true channel noise variance plus the incoherent noise

variances of the predictor channels. The coefficient controlling the amount of the jth chan-

nel’s variance added to that of the ith channel is the square of the transfer function element

linking the channels. More formally:
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r i ≈ σ
2
i +

N

∑
j=1

Gi, jσ
2
j (4.13)

Of course, by predicting each of the N channels with the N-1 others we obtain N equations

of the form of 4.13 in N unknowns— a linearly solvable system. After Egbert (1997), if

r is the residual variance vector, whose ith element is the RMS res of the ith channel, we

solve:

r = (I +B)σ2 (4.14)

where Bk,l =Gk,l (the coefficient in front of the lth predictor channel when fitting channel

k). We apply a technique of regularization to solving this system to account for the pos-

sibility that negative, or very small variances could be returned by the linear system. The

regularization is basically a constraint which prohibits the incoherent noise estimates from

becoming smaller than 20% of their original estimate, and is enacted by repeatedly solving

the modified version of 4.14:

r = (I + µB)σ2 (4.15)

trying at first to solve 4.15 withµ=1, but successively reducingµ if the ’twenty-percent’

condition is violated.
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STEP 4. Repeat Step 1, then repeat Step 2, but estimate incoherent noise variances differ-

ently. Transform the data into units of signal to noise using the noise values from Step 3.

Find the number of eigenvalues M of the scaled SDM significantly greater than 1 (here, to

be conservative, we use strictly greater than 1). Approximate the ith channel by projecting

X∼i,: onto these M principal components. This is done by decomposingS̃=UΛU∗, where

S̃represents the scaled SDM with the ith row and column deleted. Then, with the columns

of U ordered with their descending singular values, select the submatrixŨ=U(:,1:M) of the

M dominant eigenvectors. Now project X∼i,: onto these M principal components by mul-

tiplying ŨX∼i,:. Thus the time series has been compressed into an M-dimensional vector

valued time series, where the vector elements are now the coefficients weighting each prin-

ciple component. The regression is the same as in Step 1 except now X∼i,: is replaced with

Ũ . Thus regression is performed on a channel’s projection onto the M dominant principle

components, rather than on the channel data itself.

STEP 5: Iterate 3 and 4 to convergence.

Once the RMEV algorithm has converged for each FC, the average SDM at the FC is

calculated, and then the band averaged SDM is calculated over all SDMs for FCs in a band.

Band averages are calculated directly with no taper.
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4.3 A global reference for geomagnetic activity

Having described the robust SDM is described, we define the signal power in channeli as

the ith diagonal element of the robustly estimated SDM minus the estimate of incoherent

noise variance. We define the average daily signal amplitude as the positive square root

of the average daily signal power. Noise is defined as the effective instrument noise level,

or incoherent noise. That is, noise which is uncorrelated between all sensors. We use

the Daniell-window band average of the incoherent noise variances returned by the last

iteration of the RMEV scheme.

We can examine the median values of signal and noise for each orientation of sensor and

each type of sensor in Figure 4.6.

These exhibit what we expect: A 1/f noise level, and a signal level showing a significant

drop as it enters the ’dead’ band (0.1-1.0 Hz). Note that the amplitude of the electric

fields at SAO is significantly larger than that at PKD. This suggests that the ground there

is much more resistive than at PKD, which is consistent with the site geologies. Before

tracking the dynamic behaviour of signal and noise, it is helpful to first consider the signal

source process of the MT field. The micropulsations in the Earth’s magnetic field have

been monitored since the time of Gauss, and there is a worldwide network of observatories

which contribute observations to a database at Potsdam which publishes summary indices

known as geomagnetic activity indices. There are several scales on which geomagnetic
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Figure 4.6: Signal and noise median amplitudes as a function of frequency calculated over
the whole four year interval.
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activity is measured. These indices are described by the NOAA website as follows:“ The

K-index is quasi-logarithmic local index of the 3-hourly range in magnetic activity relative

to an assumed quiet-day curve for a single geomagnetic observatory site. First introduced

by J. Bartels in 1938, it consists of a single-digit 0 thru 9 for each 3-hour interval of the

universal time day (UT). The planetary 3-hour-range index Kp is the mean standardized

K-index from 13 geomagnetic observatories between 44 degrees and 60 degrees northern

or southern geomagnetic latitude. The scale is 0 to 9 expressed in thirds of a unit. This

planetary index is designed to measure solar particle radiation by its magnetic effects. The

3-hourly Ap (equivalent range) index is derived from the Kp index as follows:”

Kp= 0o 0+ 1- 1o 1+ 2- 2o 2+ 3- 3o 3+ 4- 4o 4+ 5- 5o 5+ 6- 6o 6+ 7- 7o 7+ 8- 8o 8+ 9- 9o 9+
Ap= 0 2 3 4 5 6 7 9 12 15 18 22 27 32 39 48 56 67 80 94 111 132 154 179 207 236 300 400

Table 4.1: Correspondence between Ap and Kp indices.

We expect variations in the intensity of global magnetospheric activity to relate to the signal

power observed by the array. Plotted in Figure 4.7 are the Ap indices for the four-years

2002-2005.

4.4 Variation in signal and noise over four years

Dynamic behaviour of signal, noise and their ratios are shown in Figures 4.8- 4.13. There

are several remarkable features about this collection of plots. Foremost, in all six plots,

note the generally stable nature of the fields. Geomagnetic activity is typically stable, and
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Figure 4.7: Ap indices over the 2002-2005 time interval.
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the instrument noise levels are stationary from day to day. There is an offset in the instru-

ment noise levels at September 20th 2002, particularly noticeable in the electric channels

(Figure 4.8). This date corresponds with a visit to both observatories during which routine

maintenance was performed. Specifically, the electrodes were removed and a mixture of

bentonite and salt water was added to the holes where they were re-embedded. This has the

effect of improving local coupling to the earth.

Signal plots, especially the magnetics, show several broadband pulses, narrow in time,

where signal levels were suddenly, unusually large. For example, these can be seen in

July and November of 2004. The pulses are present at both sites and hence are not local

phenomena. The pulses correspond to days of anomalously high geomagnetic activity.

NOAA classifies days where the Ap index is greater than 49 as major geomagnetic storms,

and Ap>29 as minor geomagnetic storms. Figure 4.14 shows magnetic signal power with

storm days removed. Note that the broadband pulses are not present in these plots.

4.5 Variation of signal and noise over one half year

The SNR during the block of data around the earthquake was not as good as in some other

years, but still reflects a reasonable level of array fidelity. The window of primary interest is

the 163-day time from day 137, 2004 to day 299, 2004. This window is significant because:

1) It extends for more than four months prior to the 2004 Parkfield M 6.0 earthquake, a
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Figure 4.8: Noise amplitudes in log10(mV/km/
√

Hz).
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Figure 4.9: Noise amplitudes in log10(nT/
√

Hz)
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Figure 4.10: Signal Amplitudes in log10(mV/km/
√

Hz). The colour scale is kept the same
as in Figure 4.8. Black triangles mark days of major solar storms.
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Figure 4.11: Signal Amplitudes in log10(nT/
√

Hz). The colour scale is kept the same as in
Figure 4.9. Black triangles mark days of major solar storms.
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Figure 4.12: Signal to noise ratio in dB for electric channels.
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Figure 4.13: Signal to noise ratio in dB for magnetic channels.
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Figure 4.14: Magnetic signal power with storms removed.
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longer period than has ever been treated by continuous ULF monitoring before an earth-

quake;

2) It is free of introduced artifacts in the data resulting from site maintenance, swapping of

equipment, or equipment malfunction.

For this time window, we display noise (Figures 4.15 and 4.16) and signal (Figures 4.17

and 4.18) in terms of amplitude spectra and signal to noise ratio in units of dB (Figures

4.19-4.20).

Figures 4.15-4.20 show a few noteworthy features. The statements from the four-year plots

about day to day stability apply. The signal power is clearly linked to solar storm activity.

The noise power is mostly stationary. There is a noticeable outlier on day 162 where Ex at

PKD suffers from increased noise levels (Figure 4.15), and a corresponding degradation in

SNR (Figure 4.19). An inspection of Figure 4.17 shows no corresponding spike in signal

power. Also, there is no corresponding spike in any of the magnetic field plots. This implies

that the energy is solely in the electric field and is broadband—a highly unlikely scenario.

Inspection of the time series shows that this outlier is an artifact of spikes in the electric

field measurements. Figure 4.21 shows the raw data and the despiked data. Although the

despiked data are not as corrupt as the raw data, they still contain many smaller spikes.

Since this behaviour is present in both electrodes, it could result from problems at the

common electrode or within the EFSC itself. It is unlikely that these fields are natural,
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Figure 4.15: Noise amplitudes in log10(mV/km/
√

Hz). Black triangles mark days of major
solar storms, and blue triangles mark minor storms.
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Figure 4.16: Noise amplitudes in log10(nT/
√

Hz. Black triangles mark days of major solar
storms, and blue triangles mark minor storms.
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Figure 4.17: Signal amplitudes in log10(mV/km/
√

Hz). Black triangles mark days of major
solar storms, and blue triangles mark minor storms.
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Figure 4.18: Signal amplitudes in log10(nT/
√

Hz). Black triangles mark days of major solar
storms, and blue triangles mark minor storms.
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Figure 4.19: Signal to noise ratio in dB for electric channels.
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Figure 4.20: Signal to noise ratio in dB for magnetic channels.
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Figure 4.21: X-electrode data at PKD, day 162, 2004. The despiked data (red) is less
corrupted than the raw data (black) but still shows unusual noise for a few hours.
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otherwise one would expect to see accompanying magnetic activity, which we do not see.

Another interesting pair of features are the general increases in noise level in Ey at PKD

between days 140 and 160, and again between days 280 and 300. These are seen as patches

of yellow in the otherwise green bands around 100s period in Figure 4.15. An examination

of the time series does not show a clear or simple explanation for these phenomena. In the

first case, noise levels in the magnetic sensors show a corresponding increase, indicating

the phenomena are more likely to be natural than those in the second time period, for which

the effect seems constrained to electric fields only.

4.6 Relevance to previous observations

Undoubtedly one of the most famous electromagnetic anomalies which has been associated

with seismic activity is that observed before the Loma Prieta earthquake byFraser-Smith et

al. (1990). The observation was made with a solenoid coil sensor whose cardinal orienta-

tion is not documented in the paper. Our plots of signal, and incoherent noise do not show,

to first order, any strange behaviour which may be interpreted as being associated with the

earthquake. Furthermore, there are several broadband pulses seen in the four-year plot.

Two of these fall within the 163 day window of Figures 4.15-4.20, and span several days.

These can be ruled out as being earthquake related under two principles. First, they corre-

late with days of high Ap geomagnetic activity index, and second, they can be observed at
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both sites. We point out, however, that these plots are not well-suited to be scrutinized for

earthquake anomalies, as they are made from data which downweights outliers. The key

point of these plots is that the broadband, natural, spatially correlated ULF micropulsations

are to first order the main components of the observed signal. In order to look for signals

originating in the subsurface, the components of the signal which are correlated between

sites should be subtracted from the raw data. It is interesting to note, however, that the

ULF magnetic field anomaly observed by Fraser-Smith et.al., which has been described as

being a possible precursory signal to the Loma Prieta earthquake, was sufficiently large as

to stand out clearly above the natural fields in several frequency bands, most notably, the

MA3 band at 0.01Hz. We plot the field amplitudes in the “MA3 band” below for the 163

day period around the earthquake.

The MA index scheme is simply a method for chopping the broadband ULF fields into fre-

quency bins. An explicit description of the signal processing used to generate MA indices

is given inBernardi et al.(1989). The method is a standard form of windowing time-series

and band-averaging Fourier coefficients over logarithmically spaced bins in frequency do-

main. The raw data input to the MA index signal processor is sampled at 30Hz. In an

effort to make a plot which is directly comparable to that which the MA index generator

would make, we resample the 40Hz array data at three quarters the rate. This introduces

error on the order of less than one half of one percent. The procedure is then as follows:

Data, scaled in Volts, are Hamming windowed in 136 second (4096 sample) sections with

no overlap. The data are then FFT-ed and converted into SI units via Equation 4.5. Band
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MA Index Frequency Band FCs averaged over 30minFFT Bins for 136s window
[Hz] window at 40Hz at 30Hz

MA3 0.01-0.02 19-36 2
MA4 0.02-0.05 37-90 3-6
MA5 0.05-0.10 91-180 7-13
MA6 0.10-0.20 181-360 14-27
MA7 0.20-0.50 361-900 28-68
MA8 0.50-1.0 901-1800 69-136
MA9 1.0-2.0 1801-3600 137-273
MA10 2.0-5.0 3601-9000 274-682
MA11 5.0-10.0 9001-18000 683-1365

Table 4.2: Table of Fourier Coefficients used to relate MA indices afterBernardi et. al.

averages are then calculated (apparently using a Daniell window, as there is no reference to

weighting in the averaging scheme) according the FC indices in Table 4.2.

Although Bernardi does not explicitly mention that the data are demeaned before FFT-ing,

we assume as much, as otherwise DC spectral leakage would severely contaminate the

MA3 band. To validate the MA indices thus calculated, we plot the spectra of a few 30

minute windows using MA averaging [Bernardi et al., 1989], together with the data used

to validate the SI unit transforms earlier this chapter.

The MA index calculations generate realistic values (Figure 4.22). Figure 4.23 shows MA3

indices converted to SI units for all horizontal coils in the array, shown over the 163 day

window around the earthquake. Comparing this plot against the observations published in

Fraser-Smith et al.(1990), shown in Figure 4.24, clearly shows an absence of variations of

the sort reported byFraser-Smith et al.(1990). The only variations anywhere near as large

as those reported in the 1990 paper occur during times of enhanced solar activity.
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Figure 4.22: MA indices plotted over validation spectra.
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Figure 4.23: Time series of MA index 3 in SI units, to be directly compared with the figure
from FS1990. Black triangles denote days of major solar storms.
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Finally, we address the topic of boxcar-like variations in the electric field as cited by Varot-

sos and collaborators (1984,1991).

We note that the days when data are flagged as bad by the variance ratio method are rife with

these sorts of features. A survey paper on electrode instabilities byPerrier et. al. (1997)

summarizes an experiment known as the Garchy electrode experiment. This experiment

determined empirically that these sorts of SES-like signals appear in the electrode data

for unknown reasons at random times. Pham et al. (1999) has suggested that some of

these signals could be linked to coupling between radio wave transmissions and the solid

earth. Figures 4.25 through 4.32 show so-called electrode instabilities in our data.

For example, Figure 4.26 depicts day 259, 2002, a time when no site visits or maintenance

were documented. Two parallel electrodes track the magnetotelluric variations consistently,

but some unexplained signals are superimposed on top of the data. It is hard to imagine

a physical process which would result in these signals being present in one electrode and

not in the other. Instead, chemical reactions occurring in the immediate vicinity of the

electrodes might produce this effect. It is also possible that some of these instabilities are

due to faulty electronics in the EFSC or data loggers.
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Figure 4.25: Parallel electrodes at PKD show completely different instabilities syn-
chronously, while instability is present in only one channel of the two at SAO. Micropul-
sations on most channels agree however, i.e. these instabilities are superimposed upon
natural fields. No site visits were documented at either site within over a week of this date.
a) instability is so large that micropulsations are rendered invisible on scale of anomaly. b)
completely different type of instability in 200m electrode. c) Hollister data also shows an
instability.
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Figure 4.26: Electric field data from two parallel electrodes at PKD showing instability
present in only one of the electrodes. No documented site visits occurred in the weeks
prior to this time, but there was a visit four days later.
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Figure 4.27: Electrode instabilities in both the PKD Ex (blue) and PKD Ey (green) data
streams.
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Figure 4.28: Electric field data showing step in PKD 100, spikes in PKD200, and a boxcar
(SES-like) signal at SAO. No site visit occurred before, but there was one 2 days after the
event, on day 1032.
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Figure 4.29: Strange instabilities in the 200m electrodes at PKD, which are not common to
the 100m electrodes. SES-type signal is also present at SAO, but not visible at this scale.
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Figure 4.30: A zoom in on SES at SAO mentioned in Figure 4.28
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Figure 4.31: Instabilities in the 100m electrodes at PKD. These signals are possibly the
result of watering of a dry electrode that occurred one day prior to the observation.
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Figure 4.32: Sharp offsets in PKD electrodes which are not mirrored by SAO electrodes.
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Figure 4.33: Boxcar-like signals of various lengths local to the PKD electrodes.



85

Chapter 5

Frequency Domain Residuals

The monitored fields have been observed, at least to first order, to be free of anomalous

behaviour associated with the Parkfield earthquake of 2004. This motivates an examination

of lower order signals. There are a variety of techniques which can be used to do this.

We begin with a simple and conventional technique, the classic remote reference residual

calculation.

5.1 Remote-reference residual theory and calculation

From the previous chapter, it is clear that natural, everpresent, electromagnetic noise is

typically observed on the order of a few pT to a few nT at all frequencies considered
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here. Moreover, the natural magnetic noise observed at the two sites is very nearly iden-

tical [Kappler et al., 2005] and the electric fields are related by a time-invariant transfer

function linking the fields observed at PKD to those observed at SAO. This transfer func-

tion has been shown empirically to be stable in [Eisel and Egbert] (2002). In order to see

any local electromagnetic phenomenon on the order of this noise or smaller, these natural,

’magnetotelluric’ fields must be separated from the observed data.

In an attempt to perform this separation, we employ a method of predicting the fields at

Parkfield with the fields observed at Hollister using an intersite transfer function.

The motivation for this is the following assumption: Should there be a subsurface process,

which were somehow generating a signal associated with the Parkfield earthquake, such a

signal would likely be much attenuated, if detectable at all at SAO. Should such a signal

exist at PKD, it could be present in more than one channel. Thus, by regressing a PKD

channel on a collection of channels which includes other PKD channels, it is possible that a

subsurface signal would be not be visible in the residual time series, as it may be canceled

by the contributions of the local channels. If indeed a signal were present in only one

channel, it should have shown up in the noise plots (Figures 4.8, 4.9, 4.16, 4.15). We thus

regress each Parkfield channel on the set of SAO channels, with the intention of removing

as much natural field noise at PKD as we can, leaving as a residual the “site noise”. The

principle is essentially the same as that underlying our calculations of incoherent noise in

the previous chapter, but in this case we determine the channel residuals without using any
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local data. It is well known that the TF will vary as a function of frequency, and so, like

incoherent noise, it is calculated separately for each band. As discussed in chapter four,

residuals are only meaningfully calculated in the complex domain before band averaging

is carried out so the prediction must be done separately for each time series of Fourier

coefficients. Initially, we calculate the TF for each channel at PKD, for each FC in each

band daily. Considering the 4xT time series of Fourier coefficients for all four channels at

PKD as a matrixD, and the 4xT time series of Fourier coefficients for all four channels at

SAO as a matrixM , we solve, daily:

DPKD(t) = GMSAO(t) (5.1)

for the complex transfer functionG relating the data at the two sites. The residual time

series are calculated and stored as data structures with the same configuration as the Fourier

coefficient files. Examples of the application of this method three separate FFT bins are

shown in Figures 5.1-5.3. These show the raw data observed at Parkfield, the predicted

field byG acting on observations at Hollister, and the residual time seriesr (t):

R(t) = DPKD(t)−GMSAO(t) (5.2)

Figures 5.1-5.3 show bins of higher frequencies,∼4s, midrange frequencies∼ 20s, and
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lower frequencies∼500s, respectively. Note that the fit around 4s is not nearly as good as

it is at lower frequencies. This is due to the “dead-band” effect, which is to say that there

is very little natural signal at periods between 1 and 10 seconds.

Figure 5.1: Least squares fit to the first Fourier Coefficient in the second band of the first
decimation level. The band is centered at T seconds. Real part of the data is on the left,
and the imaginary part on the right. Observed fields are shown in blue, remotely-predicted
fields are in red, and residuals in green.

Spectral matrices can be calculated from these residual time series and the signal ampli-

tudes in the residuals plotted over the long term. Four-year residual plots are shown below,

where each day and frequency band are in terms of the RMS amplitude of the band av-

eraged time series of residual Fourier coefficients. Note the relatively large residual in

the second band from the bottom at around 4s, which is especially prominent in the Ey-

component at PKD. This unknown signal component is local to the site. By inspecting this

band more closely, we can see that this signal component is actually much more narrow in
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Figure 5.2: Least squares fit to the second Fourier Coefficient in the ninth band of the
second decimation level. The band is centered at 25.6 seconds. Real part of the data is on
the left, and the imaginary part on the right. Observed fields are shown in blue, remotely-
predicted fields are in red, and residuals in green.

Figure 5.3: Least squares fit to the first Fourier Coefficient in the sixteenth band of the
fourth decimation level. The band is centered at T seconds. Real part of the data is on
the left, and the imaginary part on the right. Observed fields are shown in blue, remotely-
predicted fields in red, and residuals in green.
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bandwidth than shown at the spectral resolution in Figures 5.4 and 5.5. Only the fourth FC

is significantly affected by this phenomenon.

A more condensed way to view this anomaly is to examine the residual of each FC in the

band, as shown in Figure 5.8. Here, the residual and signal RMS amplitudes are typically

near the same value for all FCs in the band with the exception of FC4 and its two nearest

neighbours. This shows again that the signal is only present only at PKD, and is very

narrow band (see Figure 5.8). It is more significant in Electric channels than in Magnetic

channels.

Note also that though the magnetic storm is significantly attenuated in these plots as com-

pared to the signal plots,it is still visible. This is likely due to a violation in the assumption

of horizontally polarized uniform fields which can happen when large amounts of energy

are injected into the global electromagnetic circuit. This is particularly evident when we

zoom into the 163-day section around the earthquake time, as in Figures 5.9 and 5.10. An-

other unexplained phenomenon in these residual plots is the apparent broadband increase

in noise power in Ey at PKD around days 150-153 (this corresponds to 29 May - 01 June

2004), which can be clearly seen in Figure 5.9.

In all the residual plots before and including Figure 5.10, regression was performed each

day, and the transfer function allowed to vary in a way which optimized fits on a day to day

basis. Of course, it is not obvious that a slowly appearing trend may not be subtracted out

by this adaptive TF residual calculation. In order to ensure that no signals with this property
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Figure 5.4: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 5.5: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 5.6: Observed fields in blue, remotely predicted fields in red, and residuals in green.
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Figure 5.7: Observed fields in blue, remotely predicted fields in red, and residuals in green.
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Figure 5.8: Misfit in a narrow frequency band. Observed FC amplitudes are shown in blue,
and residual FC amplitudes are in red.

are present around the time of the earthquake, we generate an averaged transfer function

over several weeks, and then apply this to the 163 day window around the earthquake in

the next section.
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Figure 5.9: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 5.10: Residual amplitudes in log10(mV/kM/
√

Hz).
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Chapter 6

Time of Day Residuals from Three-week

Averaged TF

Plots of residuals similar to those shown in the last section are generated here, but with

three key differences.

First, rather than calculating the TF directly from regression on the time-series of Fourier

coefficients, the robust SDM is used to calculate the TF. This has the effect of stabilizing the

TF estimates against outliers. Consider an arbitrary but fixed frequency bin centered atω.

We seek to predict the field values at from one group of channels by using another group.

In this case, the groupings are Parkfield channels and Hollister channels, but the following

steps would work for arbitrary channel groupings, provided the sets of channels have no
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intersection. Let one group of channels (for example the channels at PKD) be represented

as the time series of Fourier coefficientsD(t) (in this caseD(t) has dimension 4xT), and

similarly the other group asM (t) (in this case the channels at SAO). The channels can be

ordered so that the SDM at the frequencyω, S̃ω , hereafter called̃S is approximately

S̃≈ 1
T

 DD∗ DM∗

M∗D MM ∗

 =
1
T

 S1,1 S1,2

S2,1 S2,2

 (6.1)

Where the approximate equality holds due to the robust SDM calculation. If the SDM

were simply calculated by as a scaled covariance matrix equality would hold instead. By

partitioning the SDM this way, the transfer function between the channels inD and the

channels inM ca be calculated directly:

G = S1,2S2,2
−1 (6.2)

This can be seen clearly if one letsD be a time series of only one channel. Then since one

solvesd=GM for G (in the absence of outliers) by ordinary least squares, i.e.G=dM∗(MM ∗)−1

it is clear by direct substitution that the transfer function betweendi(t) at PKD and all chan-

nelsM (t) at SAO is exactly equal to that in 6.2. Equation 6.2 is slightly more general, as

each row ofG corresponds to a TF between one Parkfield channel, and all remote (Hollis-

ter) channels.
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The second difference between the residuals in this section and those of the prior section is

that the SDMs used to calculate the residuals are calculated over several time windows in

the day. Specifically, the 24 hour day is partitioned into 13 non-overlapping, approximately

equal sized windows, and the SDM is calculated for each of these 13 windows. Previously,

for a given channel and frequency band, each pixel in the residual plot represented the

channel’s residual RMS amplitude over a whole day. In this case, there are 13 plots for

each channel, and each pixel represents the residual RMS amplitude over an∼ 2hr section

of time.

Finally, the TFs are not calculated for each day of the 163-day section, but rather only over

the first three weeks. Thus, for each of the w=1..13 windows of a dayd, we get an estimate

of the SDM at that day:Sw,d. We then simply take:

Sw =
21

∑
d=1

Sw,d (6.3)

as the estimate for the robust SDM. Figures 6.1 through 6.13 depict the electric field resid-

uals, and Figures 6.14 through 6.26 show the magnetic residuals.

A number of noteworthy features appear in these plots.

Figures 6.7 and 6.8 show an interesting weekly periodicity, characterized by a broadband

decrease in amplitude of the residuals on Saturdays and Sundays. UT time is 7 hours ahead
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of PST in summer, thus these weekly periods are showing up between 4 and 10am local

time. It is likely that much of this effect is due to the BART DC electric train. More

evidence of this is shown in the next section. This effect however appears to be too broad

in frequency range to be solely due to the BART, and may also be related to other EM

phenomena. Ex at SAO in Figure 6.7 shows a clear decrease in residual power over all

frequencies not in the dead band.
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Figure 6.1: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.2: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.3: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.4: Residual amplitudes in log10(mV/kM/
√

Hz).



106

Figure 6.5: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.6: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.7: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.8: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.9: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.10: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.11: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.12: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.13: Residual amplitudes in log10(mV/kM/
√

Hz).
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Figure 6.14: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.15: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.16: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.17: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.18: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.19: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.20: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.21: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.22: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.23: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.24: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.25: Residual amplitudes in log10(nT/
√

Hz).
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Figure 6.26: Residual amplitudes in log10(nT/
√

Hz).
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Chapter 7

Eigenvalues of the SDM

The robustly-estimated spectral density matrices (SDMs) expressed in units of signal to

noise ratio and discussed in Chapter 4 can be used to estimate the number of uncorrelated

sources present in the array data. Typically, the MT field is a two dimensional entity at mid-

latitudes [Egbert and Booker, 1989], and it is this field which is the dominant source of the

ambient fields when cultural sources are far away. If a subsurface process were occurring

in association with the earthquake, it is difficult to imagine that such a process would be

correlated with the ambient geomagnetic variations. This assumption motivates the de-

composition of the SDMs in each frequency band into their principal components, and an

examination of the time series of eigenvalues associated with each principal component.

Formally, for an arbitrary but fixed combination of dayt and frequency bandω, the daily
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averaged SDMSω (t) is expressed as

Sω(t) = Uω(t)Dω(t)U∗
ω(t) (7.1)

whereU is the unitary matrix whose columns are the normalized eigenvectors ofS, andD is

a diagonal matrix whose non-zero elements are the eigenvalues ofS (see Appendix 1 for a

discussion of the eigenvectors of covariance matrices). Assuming thatD is ordered so that

the diagonal entriesλ 2
i are in descending order, the dominant mode of the data distribution

which generatedS is given byu:,1 (i.e. the first column ofU). The coordinate system in

which u is described isC8, such that each axis is associated with one of the eight sensors,

and where one graduation on theith axis equals the standard deviation of the noise of the

ith channel. The dominant mode1M of the daily time seriesX(t) is then described by the

time series:

1M(t) =
8

∑
i=1

ui,1X i,:(t) (7.2)

whereu1, j is the jth element of the 1st column ofU, andX i,:(t) denotes the ith instrument

channel making upX.

The first four ordered eigenvalues ofS, Di,i are plotted in Figure 7.1. This plot shows

that there are two dominant sources of energy, but that a non-trivial third source is clearly
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present especially in the bands around 30 to 100s. This is mostly noise form the BART

(Bay Area Rapid Transit) trains, as shown inEgbert et al. (2000). The 163 day window

around the earthquake is shown in Figure 7.2.

There is a clear increase in all eigenvalue amplitudes in the dead band on day 272. This

appears to be the signal produced by the earthquake itself, and is discussed later in the sec-

tion on future work. Evidence that this anomaly is the actual ’co-seismic signal’ [Kappler

et al., 2006] is shown in Figures 7.3 and 7.4. Figures 7.3 show significant signals observed

co-seismically in both the electric and magnetic recordings. Figure 7.4 displays the linear

combination of channels (scaled into units of SNR) which make up the third eigenmode

at sample Fourier coefficients in a few frequency bands. Figure 7.4(a,b) clearly show the

co-seismic signal at 1715h UT, which is an order of magnitude larger than the other signal

in (a). This one spike effectively more than doubles the norm of the time series. In case

(b) at∼ 7s the earthquake is still visible, but does not change the norm of the time series

significantly. By the time the period gets to 13s, the co-seismic signal is buried beneath the

ambient noise. The co-seismic signal is not removed by the despiker because the seismic

waves only take around 45 seconds to propagate between the sites and hence the 256 sec-

ond variance windows (described in Chapter 3) see a spike at both sites, avoiding spurious

flagging of this window.

We see that there is an energy increase energy in the third eigenmode of the 4s period

around the time of the earthquake. This band has shown anomalous increases in energy in
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the residuals as well, most visible in Ey at Parkfield. Three noteworthy aspects of this plot

are: 1. Most of the energy in the system is in the top two eigenvalues. This implies that

the condition number of the SDM is quite high. On days when there are solar storms more

energy can be seen in the lower order modes; 2. The third eigenvalue shows a significant

source which is uncorrelated with the two dominant modes in the band around 30-100s; 3.

No anomalous energy (besides the narrow band phenomena in the third eigenvalue around

4s) is present around the time of the earthquake in this plot.

7.1 Dominant modes

The colour axis of the eigenvector plots shown in Figures 7.1 and 7.2 represents the lengths

of the principal axes of the data distribution in the eight dimensional complex spaceC8.

The principal axes of the data distribution have not, thus far, been shown to be stable. It is

unclear whether the shape of the data distribution varies from day to day in its eccentricity

(i.e the ratios of the various eigenvalues to one another). Also, the orientation of the dis-

tribution could vary, i.e. the distribution of data on one day may be rotated with respect to

the distribution on another day. Considering that the dominant sources of the field (below

1Hz) are the quasi-stationary pulsations of the magnetosphere induced by the solar wind

flowing past, it seems plausible that the modes of the daily distributions are similar from

day to day.
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Figure 7.1: Dominant four eigenvalues of the SDM in dB plotted for the 2002-2005 time
interval for all frequencies.
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Figure 7.2: Dominant four eigenvalues of the SDM in dB plotted for the 163-day interval
surrounding the 2004 Parkfield earthquake.
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Figure 7.3: Co-seismic signals registered by the PKD seismometer (a), coils (b), and elec-
trode (c). All y-axis units are in raw datalogger counts.
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Figure 7.4: Fourier Coefficients for Hx at PKD, September 28, 2004. The spike at 1715UT
corresponds the the earthquake.
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To measure the tendency of the principal axes of the data distribution to vary or ’wiggle’

from day to day, we look at the variation in angle of the Nth ordered, daily average eigen-

vectors, at frequencyω with respect to some reference unit vectorr̂N,ω .

Formally, for each dayt and frequency bandω, defineUω (t) as the unitary matrix whose

columns are the ordered, normalized eigenvectors ofSω (t). For each of the eight modes,

defineuN,ω (t) (N=1..8) as the Nth unit eigenvector ofS or column ofU. By inspecting

Figure 7.2 together with some of the noise level plots in the previous sections, we can

select out a few days that are low in noise and show no remarkable storm activity. For

example days 154 through 161 of 2004 have an average Ap of 9.6, and show fairly low

noise levels, especially at PKD. The reference vector,r̂N,ω is then made by averaging

together theuN,ω (t) for t in [154, 161].

There are several ways to define the mean of a complex number. Here we store the complex

numbers in Cartesian form, and simply average over the real parts and the imaginary parts

independently. Therefore, the expectation value E of a complex variablex is estimated by:

E(x) = E(Re(x))+ i ∗E(Im(x)). (7.3)

Unless otherwise stated, any averaging over complex numbers is done via equation 7.5.

Thus:
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r̂ω =
E(xω)
‖E(xω)‖

(7.4)

The cosine of the angle between the Nth average moderN,ω , and the Nth daily observed

modeuN,ω (t) is then simply given by

‖< rN,ω ,uN,ω(t) >‖ (7.5)

Here <,> denotes standard inner product. The cosines associated with each observed

daily mode and reference vector are plotted as a function of frequency and time in Figure

7.5. The colour scale saturates at
√

2 corresponding to a cutoff at 45 degrees. Note that the

cosines are typically near 1 in the first and second modes, indicating stability in eigenvector

orientation. Interestingly, the modes which are consistently co-linear occur in the third

eigenvector in the 30-100s range. This is undoubtedly the effect of the BART train. It is

interesting to note that in the smallest eigenvalues (7 and 8) in the dead band there is also a

consistent mode whose orientation is highly stable. This may be the instrument noise itself.

Motivated by evidence that the dominant eigenvectors are stable, we stack out some of the

jitter in the modes by averaging the daily SDMs. If we average over all of the days in the

163 day window, we obtain Figure 7.6. Notice that most of the energy which was present in

the fourth mode in Figure 7.2 is no longer present in this plot, implying that the orientation
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Figure 7.5: Cosines of the angles between observed modes and reference vectors.
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of mode four is not particularly stable.

There is some evidence for weekly periodicity in the bands around 30s period in the third

eigenvalue of Figure 7.6. This is explored further in Figures 7.7 through 7.9. A persistent

phenomena in the 4th average mode around 10s period, first becomes apparent in these

plots.

Note that in Figure 7.2 much energy is injected into modes 3 and 4 when storms are occur-

ring. This energy clearly skews the 3rd and 4th eigenvectors, as can be seen in Figure 7.5.

To account for this effect, an averaged SDM is calculated only over days when neither mi-

nor nor major storm activity is present (Ap<29). Projections onto the modes of this SDM

are shown in Figure 7.7, and reveal some weekly periodicity in the ’BART’ band. The

times of reduced amplitude in the 3rd mode correspond to Sundays when the BART train

runs a reduced schedule. Respecting the caveat that some subtle components in the data

distribution may be present around the time of the earthquake, Figure 7.7 is reproduced in

Figure 7.8, but in this case only non-storm days which occurred more than four weeks prior

to the earthquake are included in the averaged SDM. Noon on Sunday is denoted by a thin,

black, solid vertical line.

Averaged SDMs can be calculated over any set of days. It is not necessary that the days

which generate an average SDM̄S are in the set of daily SDMs which are summarily

projected. Figure 7.9, is made by averaging only weekdays, in particular days [806-811]

and [816-820], although the projected (plotted) days correspond to days [867-1030]. Note
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Figure 7.6: Projection of daily eigenvectors onto modes of averaged SDM calculated over
all days in the 163 day window shown
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that in all of the ’averaged modes’ plots, the narrow band signal, previously observed in the

third eigenvalue at∼ 4seconds in Figure 7.2 is not visible. This implies that the signal was

not typically present on the days used to create the averaged modes, i.e. that that component

is not typically part of the data distribution. Figures 7.6 through 7.9, also demonstrate

some sensitivity to the choice of days used in the average, but as long as days in which the

distribution is highly abnormal (such as major storm days) are not used in calculating the

averaged SDM, the plots retain the same basic characteristics.

The plots presented in this chapter show several subtle phenomena in the ULF EM fields,

but provide no information about the location of a particular phenomenon. In the following

section, we explore a technique that can be used to increase our confidence that an observed

anomaly is physically plausible by determining if it is coherent between E and H, and to

determine if the phenomenon is present at a single site, or both sites, by determining if it is

coherent at sensors present at both sites.

Figure 7.10 is a plot of the eigenvalues of the SDMs calculated from the residual time

series from Chapter 5. The residual SDM is calculated by simply substituting the residual

time series in for the original time series in Equation 4.8. A comparison of Figure 7.10

with Figure 7.2 clearly shows that the two dominant modes have been almost completely

removed by calculating the residuals. Indeed, the main source of energy in Figure 7.10 is

the BART.
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Figure 7.7: Projection of daily eigenvectors onto averaged modes in the case where SDM
is averaged over all non-storm days in the 163 day window.
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Figure 7.8: Projection of daily eigenvectors onto averaged modes. SDM averaged over all
non-storm days in window which are more than four weeks prior to September 28th.
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Figure 7.9: Projection of daily eigenvectors onto averaged modes in the case where SDM
is averaged over weekdays [806-811], and [816-820].
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Figure 7.10: Eigenvalues of the residual SDM. Colour bar is in dB with respect to noise
level
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Chapter 8

Canonical Coherences

8.1 The method of Canonical Coherences

The Canonical Coherence (CC), sometimes referred to as Canonical Correlations, method

[Hotelling, 1935;Brillinger, 1969] has been applied to long term geophysical monitoring

by Lyubushin(1998). Here, it is a frequency dependent measure of the coherence between

two vector-valued time series. We use the method to explore the extent to which two

disjoint groupings of array channels are correlated. A time series of Fourier coefficients

for all array channelsZ(t), is broken into two time series,X(t) andY(t) where there is no

intersection between the set of channels making upX and the set of channels making upY.

We seek to best approximate the behaviour of a linear combination of channelsX(t) using
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a linear combination of channels in the other groupY(t). Let dim(X)=m and dim(Y)=n,

and without loss of generality,m≤n. Then, there existm ordered pairs of row vectors

{ p1,s1}...{ pm,sm}, wherepi andsi aremandn dimensional respectively with the following

properties:

P1: the correlation between the canonical variatesp∗i X ands∗i Y is maximal in the space

defined by the projections ofX(t) andY(t) orthogonal to the firsti-1 canonical variates.

(for i=1 no projection is required).

P2: the canonical variates withinX or Y are uncorrelated, i.e.<p∗i X,p∗j X>=0=<s∗i Y,s∗j Y>

for i 6=j

The calculation of the first first canonical variates is shown below: IfX andY are mean

subtracted, then the correlationΓ of the vectorsp∗1X ands∗1Y is given by:

Γ =
< pX,sY >√

< pX,pX >< sY,sY >
=

pXY∗s∗√
(pXX∗p∗)(sYY∗s∗)

(8.1)

Adopting standard covariance matrix notation (ΣXY=XY∗), equation 8.1 can be written:

Γ =
pΣXYs∗√

pΣXXp∗sΣYYs∗
(8.2)

Now, define two vector-valued variables:



148

ρ = (Σ1/2
XX)p∗ σ = (ΣYY

1/2)s∗ (8.3)

The square-root matrices above are well defined as long as the covariance matrices are non-

singular. Note, if the condition number of either covariance matrix is too large to reliably

calculate the square roots of the covariance matrices, one will need to remove extraneous

dimensions using principal components or similar techniques.

Substituting the variables of Equations 8.3 into Equation 8.2 yields:

Γ =
ρΣ−1/2

XX ΣXYΣ−1/2
YY σ∗√

(ρρ∗)(σσ∗)
(8.4)

Now considering the numerator of Equation 8.4 as the inner product between the two vec-

torsa andb, defined as

a = ρΣ−1/2
XX ΣXYΣ−1/2

YY b = σ
∗ (8.5)

and substituting Equation 8.5 into the following form of the Cauchy-Schwarz inequality:

< a,b >≤
√

< a,a >< b,b > (8.6)
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we obtain the following inequality

ρΣ−1/2
XX ΣXYΣ−1/2

YY σ
∗ ≤ (ρΣ−1/2

XX ΣXYΣYYΣYXΣ−1/2
XX ρ

∗)1/2(σσ
∗)1/2 (8.7)

Dividing both sides of the above expression by the norms ofρ andσ , the left hand side

becomes exactly the expression forΓ from 8.4 and we obtain:

Γ ≤

√
(ρΣ−1/2

XX ΣXYΣYYΣYXΣ−1/2
XX ρ∗)

ρρ∗ (8.8)

By viewing the five-matrix product in the center of the numerator in expression 8.8 as a

single matrix:

A = Σ−1/2
XX ΣXYΣYYΣYXΣ−1/2

XX (8.9)

we see that the expression within the square-root on the right hand side of 8.8 is actually a

Rayleigh quotient, having form:

ρAρ∗

ρρ∗ (8.10)
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This ratio obtains its maximum value whenρ is the dominant eigenvector ofA (note the

expression is independent of any non-zero scalar applied toρ). Thus, we have determined

that Γ is bounded above by the value it attains for a specificρ, which we can calculate

from the data by performing an SVD on the matrix A. By definition 8.3, givenρ, we can

calculatep. Calculation ofs can be done similarly.

To obtain further canonical variates, an inductive argument can be used to subtract the

projections ofX and Y which lie along the first canonical variate, and then repeat the

previous arguments, this time withm set tom-1. It turns out that the ordered eigenvectors

of A provide themvectorsρ1...ρm needed to calculatep1...pm, and the ordered eigenvalues

λ1...λm provide the correlation coefficients of each canonical variate pair.

For now, we have shown that P1 is at least true for i=1;

If we take as the canonical variates the vectorspi which are generated by A’s eigenvectors

ρi and equation 8.3 we can see that they obey property P2 as follows: The covariance of

piX andp jX is given by

piΣXXp∗j = ρiρ
∗
j = δi, j (8.11)

where the first equality sign is verified by the definition ofp, and the second follows from

the properties of the unit eigenvectors of A. Clearly a similar argument can be applied to
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the siY. Defined as above, the 2nd pair of canonical variates has the greatest correlation of

any vectors in the subspace orthogonal to the first vector. In fact the ithth canonical variates

are the maximally correlated linear combinations ofX i−1 andY i−1. HereX k−1 refers

to the projection ofX onto the subspace orthogonal to{bx,1...bx,k−1}, and similar forY.

We conclude that The eigenvalues of A yield the canonical correlation coefficients. Further

exposition of the properties of canonical coherences is given inHardle and Simar(2007).

8.2 Numerical results

With only two sites and two field types (E and H), there are two natural signal groupings.

The channels are thus partitioned as:

1. Electrics in one groupX(t), magnetics in the otherY(t);

2. Parkfield in one group, Hollister in the other.

Figures 8.1 and 8.2 show the four year behaviour of the four canonical coherence coef-

ficients, for the E-H, PKD-SAO channel groupings respectively. The 163 day window

surrounding the earthquake is shown for the same groupings in Figures 8.3 and 8.4

Note the increase in coherence of the 4s band in the third electric-magnetic canonical co-

herence around the time of the earthquake. A corresponding phenomena is not visible in

the PKD-SAO plot. This implies that the phenomena is present at only one site. A closer
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Figure 8.1: Canonical Coherences (E-H) for the 2002-2005 time interval. The colour axis
is Γ. Black triangles indicate days of major magnetic storms.
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Figure 8.2: Canonical Coherences for the 2002-2005 time interval for intersite channel
groupings. Colour axis isΓ. Black triangles indicate days of major magnetic storms.
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Figure 8.3: Canonical Coherences between electric and magnetic field channels in 2004.
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Figure 8.4: Canonical Coherences in 2004 between channel groupings: Parkfield, and
Hollister.
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inspection of this band is shown in Figure 8.5.

A four year plot of this 4s band, median filtered, is shown in Figure 8.6 (top) and again

with storm days removed (bottom). The significance of the increasedΓ value around the

earthquake is diminished as one looks at this four-year time series. In an effort to reduce

the appearance of variations in this time series which are also present in neighboring bands,

we normalize the 3rd CC coefficient in the the 4s band by the 3rd CC coefficient in a neigh-

boring band (3.3s). This results, after smoothing, in Figure 8.7. It is tempting to ascribe

significance to the local maxima in the normalized coherence near the earthquake in Figure

8.7. The reality is that the largeΓ observed in the 4s band of the 3rd canonical coher-

ence during Fall 2004 has a signature identical to the one observed in Spring of 2002. It

is narrow-band and inhabits the exact same three Fourier coefficients of the band cantered

around 4.09s. A plot of the Fourier coefficient and residual amplitudes, calculated accord-

ing to the procedure outlined in Chapter 6 is shown in Figure 8.8, which compares April

5, 2002, against September 26, 2004. Note that although the observed field amplitudes

are shifted from one time of observation to the next—as can be expected due to natural

variability in field strength)— the anomalous signal is present at the same amplitude. No

significant seismicity occurred at near PKD within a month of day 95, 2002. Clearly there

is a real phenomenon responsible for these signals, and we discuss strategies for identi-

fying the source in the section on future work. On the basis of Figure 8.8, however, it is

reasonable to imagine that the source of the 2002 anomaly is the same as the source of the

2004 anomaly.
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Figure 8.5: The anomalous band in CCHE for the 163-day interval surrounding the 2004
Parkfield earthquake. The top figure includes days with major magnetic storms, while these
days are removed in the bottom figure.
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Figure 8.6: The anomalous band in CCHE for 2002-2005. Top figure includes days with
major magnetic storms; these days are removed in the bottom figure.
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Figure 8.7: The importance of long-term monitoring is highlighted by this plot. Considered
only the two years centered around the earthquake, the time series might be interpreted as
being related to the earthquake. A wider look at the phenomena, however, shows anoma-
lous variations in 2005, as well as a global maximum in spring of 2002.
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Figure 8.8: Misfit in a narrow frequency band centered at∼4s period. Observed field FCs
in blue, , residuals in red. X’s are from day 95, 2002, O’s are from day 270, 2004 (2 days
prior to the PKD earthquake).
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Chapter 9

Apparent Resistivity Variations

9.1 Estimation of the MT impedance tensor and apparent

resistivity

The transfer function monitoring described in the array objectives (Chapter 1) generates

stable estimates of apparent resistivity (ρa) which can be used to track time and frequency

(depth) dependent variations in ground conductivity. The magnetotelluric impedance tensor

Z has the following structure and relationship to measured fields E and H:
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 Ex

Ey

 =

 Zxx Zxy

Zyx Zyy


 Hx

Hy

 (9.1)

Here E and H are the locally measured fields.

Equation 3 can be shown to hold perfectly when the usual MT assumptions are in place,

i.e. incident fields are plane waves of infinite horizontal extent. In practice, we know that

this assumption is not exactly true [Egbert and Booker, 1989; Egbert et al., 2000], but

is a reasonable approximation at our site latitudes. The off-diagonal elements of the MT

impedance tensor are in direct proportion to the square root of the bulk resistivity of the

ground.

ρi j =
1

µω
‖Z2

i j‖ f or i 6= j (9.2)

The method of transfer function calculation is similar to the RMEV method used for SNR

estimation. Our technique of calculating the MT impedance tensor, however, involves both

local and remote field measurements called the Remote Reference (RR) estimate, which

has been found to significantly stabilize estimates ofZ [Gamble et al., 1979]. The robust

RR processing was suggested inChave and Thomson(1989) and is outlined clearly inEisel

and Egbert(2002). Minor modifications account for remote reference processing and the

inclusion of only other-field-type (OFT) channels.
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Using RR processing, the impedance tensor is estimated iteratively by:

Z = (RWH)−1(RWE) (9.3)

The estimation process is initialized using the dataset cleaned during SNR processing in

Chapter 4 as ourE, H, andR data, whereR corresponds to the remote site magnetic field

data, andW is a weighting matrix initially set toI . At each step, a diagonalW is calculated

which pulls outliers inE, H, R toward their expected values as described inEisel and

Egbert(2002). Here, ’errors’ are measured using a hybrid norm, which is essentially an

L2 norm for residuals within 1.5 standard deviations of the residual probability-density-

function, and an L1 norm otherwise. The process effectively downweights leverage points

[Chave and Thomson, 1989], and allows for outliers at the reference site. Note that careful,

robust estimates forσ are also required at each iteration. Calculation details of theseσ

estimates can be found in the appendix ofEgbert and Booker(1986).

The four-year median values for apparent resistivity are shown in Figure 9.1. Figure shows

the raw apparent resistivity estimates returned by the PKDSAOg MT processing codes. The

plots are in percent deviation from the median. Two features of these plots stand out to first

order: evidence for gradual variation of apparent resistivity is present as are broadband

offsets in the time series. Frequency independent shifts in the time series cannot be truly

related to changes in subsurface conductivity, since each frequency has different depth
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Figure 9.1: Median values of apparent resistivity, x denotes TE, o denotes TM

sensitivity. We attempt to account for these by applying a distortion analysis to the time

series.

9.2 Distortion corrections

Frequency independent shifts in the data can be caused by incorrect gain settings on EFSCs,

as well as by ’galvanic distortion effects’. These effects can be caused by inhomogeneities

in conductivity structure. When quasi-DC electric fields cross boundaries in the conductiv-

ity structure, charges accumulate on the boundaries, and give rise to a secondary electric

field, which perturbs or ’distorts’ the primary field in the region around the inhomogene-

ity. Galvanic distortion is approximately a frequency independent effect as long as the skin

depths associated with the frequencies considered remain large compared to the size of

the perturbing inhomogeneities. Phases of the MT tensor are, however, not distorted by
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galvanic or DC effects. We seek to decouple the daily measured impedance tensors into

a product of tensors, where one factor is the complex four-year median impedance tensor,

and the other factor is a frequency independent (Real) perturbation (distortion) tensor we

labelD.

Formally, for each dayt, and each frequency binω, we have an impedance tensor estimate

Zt,ω ∈ M2,2(C). These 2x2 matrices can be concatenated over all frequencies to create

Zt ∈ M2B,2(C), whereB is the number of frequency bands under consideration. Here we

useB=23 log-linear spaced bands. Similarly, a four-year median impedance tensor at each

frequency, which we denote bȳZt,ω , can be concatenated over theB frequency bins to

makeZ̄∈ M2B,2(C).

We then define the daily distortion tensorDt as the least squares solution to

0 = ‖Zt − Z̄Dt‖ (9.4)

where we constrainD to be in M2,2(R).

By multiplying Zt on the left byD−1
t , one obtains a a ’distortion-corrected’ impedance

tensor, which is nearest the long term median impedance tensor in a least-squares sense.

The distortion-corrected apparent resisitivities are plotted on the same scale as the uncor-

rected data in Figure 9.3, and with a finer scale in Figure 9.4. It is difficult to interpret the
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variations in Figure 9.4 in terms of earth processes as opposed to simply smoothed noise.

Erring on the side of caution, we interpret these variations as noise. Note that though these

variations are random from day to day, the four-year time series is not stationary. There

seems to be a tendency for the apparent resistivity estimates to be less stable during the

rainy season.

The distortion corrections for a few individual bands can be seen in Figures 9.5- 9.7. Most

of the variability in the deviation from the median is removed by the distortion corrections.

Figure 9.8 shows that the distortion tensor absorbs most of the seasonal variability present

in the apparent resistivity time series.
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Figure 9.2: Raw apparent resistivity data in percent devition from log-median. TE mode is
shown on top, and TM mode on the bottom. Days of significant (> 0.1 inch) rainfall are
marked with black circles.
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Figure 9.3: Smoothed, distortion-corrected apparent resistivity data from Figure 9.2. The
y-axis is log10 of the period in seconds.
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Figure 9.4: Smoothed distortion-corrected apparent resistivity data from Figure 9.3. Colour
scale has been contracted from the previous plot, but is still in percent deviation from the
median.
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Figure 9.5: Time series of apparent resistivity deviation from median, and distortion-
corrected time series deviation from the median. Band centered at 7sec period.
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Figure 9.6: Time series of apparent resistivity deviation from median, and distortion-
corrected time series deviation from the median. Band centered at 20sec period.
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Figure 9.7: Time series of apparent resistivity deviation from median, and distortion-
corrected time series deviation from the median. Band centered at 216sec period.
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Figure 9.8: Variability of the 1,1 element of the distortion tensor over the 2002-2005 time
interval.
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Chapter 10

Selections of 40Hz Data

THIS SECTION INTENTIONALLY OMITTED DUE TO USGS IMPOSED RE-

STRICTIONS ON FTR FILESIZE.
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Chapter 11

Concluding Remarks

11.1 Conclusions

This study was primarily motivated by reports of anomalous electromagnetic activity pre-

ceding earthquakes. Data were analyzed from a pair of ultra low frequency electromagnetic

observatories, which are instrumented like typical magnetotelluric acquisition sites, modi-

fied to monitor data for many years. One of the sites is located 20 km from the epicenter

of the September 28, 2004 M6 Parkfield earthquake. The window of time treated (2002-

2005) spans four years around the magnitude 6 earthquake. Before analysis, the data were

carefully examined for pathological anomalies, such as spikes of non-physical amplitudes,

gaps due to power outages or instrument malfunctions, etc. The corrupted data were subse-
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quently either replaced or removed. In order to ensure that the data cleaning process did not

remove the very anomalous signals which were later searched for, the temporal distribution

of the pathological anomalies was examined to confirm that there no statistically signif-

icant variation occurred in the number of anomalies around the time of the earthquake.

Once extreme outliers were treated, an examination of array fidelity was undertaken. Some

common methods of signal to noise ratio calculation from magnetotelluric data processing

literature are used as an index of confidence for data quality. Windows of time reflecting

sufficiently high signal to noise ratios were plotted in terms of signal and noise amplitude

spectra, and the behaviour of the ULF fields were shown over several years. From these

first order field behavior plots it is clear that most of the recorded energy is coherent over

the spatial extent of the array. The observed fields are the sum of natural magnetotelluric

fields, cultural noise, instrument noise, and possibly other sources.

The ULF fields sampled at 1 Hz were found to be remarkably stable over the period of

analysis. Nearly all significant variations in signal amplitude spectra were directly corre-

lated with unusually active periods of global geomagnetic activity. A significant challenge

in this study was accounting for DC offsets and gaps in observed data due to instrument

swaps and site maintenance. Documentation of site visits and accurate recording of in-

strument calibrations and calibration changes are crucial to the monitoring effort and must

be incorporated in any long term study which engages in ULF monitoring efforts. Long

term time series of the Schumann resonance peak amplitude were used as an indicator of

DC offsets. These plots showed that variations of several percent field strength were ob-
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served across maintenance dates. Such offsets constitute an unacceptable level of noise in

a search for subtle variations in field properties. Fortunately, a 163 day window around the

earthquake was found to be free of site visits, and associated DC offsets.

The possibility that a local electromagnetic signal near the epicenter may be masked by

the coherent magnetotelluric noise was investigated. Various methods of transfer function

estimation were employed to subtract the dominant modes of the MT field, in order to

look deeper at the ’residual’ fields. While these residual fields did show some interesting

phenomena, no signals that can be said to be earthquake precursors were found. It is

clear, however, that there are some significant signals in the recorded data which cannot

be accounted for by simply subtracting the magnetotelluric fields. Most notably is the

signature of the BART DC electric train system, which contaminates the data at periods

between 10 and 40 seconds, as well as some PC3 activity.

The signals were decomposed into principal components in order to look at the behaviour

of the linear combinations of array channels which are maximally uncorrelated. This is

done with an eigenvalue decomposition of the array covariance matrix. The fine sensitivity

of the array is evidenced by clear identification of a DC electric train which is 125km form

the nearest site in the array.

The technique of Canonical Coherences was employed to distinguish anomalous fields

which are spatially broad from anomalies which occur at a single site only, and further-

more to distinguish anomalies which are present in both the electric and magnetic fields
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form those which are present in only one field type. A signal identified by this technique

was found to be present in both electric and magnetic fields, and was not present at both

sites. The signal in the band around 4s period increased significantly in amplitude before

the earthquake and decreased significantly afterward. Only by looking more than a year

to either side of the local maxima centered on the earthquake does it become clear that

the signal is also present and active when no significant seismicity is present at Parkfield.

This demonstrates that long term monitoring is indispensable to any systematic (scientific)

search for precursory signal.

Apparent resistivity estimates were generated daily at Parkfield. Most of the variation was

observed to be seasonal and frequency independent, suggesting a seasonal distortion effect.

Once the data were corrected for distortion, nearly all of the variability in the apparent

resistivity was removed.

Results were calculated using data sampled at 1Hz, but a few selected plots of higher fre-

quency data were shown for 75 days around the earthquake. These show a number of

interesting signals, some of which are unexplained, but none of which can be associated

with the Parkfield earthquake.
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Appendix A

A short tutorial on eigenvectors and

eigenvalues of the SDM.

The relationship between the vector valued time series of Fourier coefficients at some fre-

quencyω, Xω (t) (in this case an 8xT complex array) and the eigenvectors and eigenvalues

of the scaled SDMSω ≈ (1/T)XX∗ is not intuitively obvious. This appendix is intended to

build some intuition with these quantities using two main examples. The first example em-

phasizes the interpretation of a square NxN matrix as a mapping from one N-dimensional

vector space to another N-dimensional vector space. The other example is a graphic de-

scription of how the eigenvectors and eigenvalues of a covariance matrix relate to the dis-

tribution of points which generated that covariance matrix.
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A.1 Examples of arrays as operators

There are several contexts in which a matrix can be viewed. In this discussion an mxn

matrix A is thought of a transformation., or a mapping from V1 to V2, where V1 has

dimension n, and V2 has dimension m. Formally, we say A∈ Mm,n(F), whereF is some

field, usually the real numbersR or the complex numbersC. For instance, the SDMs of

Chapter 4 can be viewed as a mapping. In that case m=n=8, and the field isC. Square

arrays like these can be thought of as automorphisms, which is to say they their domain

and range are the same spaces, and the mapping is bijective, i.e., it is one to one, and

onto. All this means is that every point inC8 is the image of some point inC8 under the

transformationS, according to the standard rules of matrix multiplication.

Visualizing the behaviour ofC8 underS is not easy. However, we can build intuition by

looking at lower dimension subspaces which we can visualize. For the sake of clarity, let

us consider a 2x2 real matrixA, which in our formal notation maps the real plane onto the

real plane, or A:R2->R2 where A∈ M2,2(R).

FigureA.1 shows how the 2x2 operator A affects the unit square. In this figure, the points

marked by x symbols transform under A to the points marked by the circle symbols (their

images underA).. The lines linking the x-symbols also transform to the corresponding

coloured lines linking the o-symbols. Moreover, a second square of the same size adjoining

the one shown along some face of a colourc would transform to a parallelogram with the
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same orientation as the one shown, which would share with the shown parallelogram the

face of colourc. The area of the unit square is by definition 1, and the determinant of the

operator A corresponds to the area of the transformed square. Thus, in Figure A.1, the

parallelogram has area 1.55. Figure A.1 shows a few properties of the covariance matrix A

that are not proved here, but that can be found in any elementary text on linear algebra.

The eigenvalues, (solutions of A’s characteristic polynomial) are real;

The eigenvectors are orthogonal.

The transformation A maps straight lines to straight lines, and moreover maps parallel lines

to parallel lines.

A point x in the domain ofA has imageAx. By looking at x, denoted by a dot on the

plane, and looking at the elements of the matrix A, it is not obvious where the point Ax

will lie. The eigenvectors of the matrix A (indicated by magenta lines) however, form an

orthogonal basis forR2. Since an eigenvectoreof A has the property thatAe=λe for some

λ , it seems that a more canonical representation of the data would be to use the coordinate

system shown by the magenta lines. This can be done by rotating the page in front of

you until the magenta lines lie in the horizontal and vertical directions. Then, a point x

can be specified by its position relative to these axes (you may want to extend the lines

out with a marker to make them the same size) and Ax=A[x1, x2]=[λ1x1,λ2x2] is simply

determined by multiplying the first element of x by the eigenvalue of the the eigenvector
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which is horizontal, and the second element of x by the eigenvalue corresponding to the

vertical eigenvector of A. Of course, performing this change of coordinate systems to a

collection of data is accomplished by multiplying the data vectors by a rotation matrix.

This matrix U is found by decomposing A=UDU∗ where U is unitary, and D is the matrix

of eigenvalues. The canonical property of the eigenbasis (shown in magenta in Figures

A.2 and A.3) becomes more clear. Also, one sees that the condition numbers of the matrix

examples are directly related to the eccentricity of the parallelogram images of the squares.

This shows at least that eigenvectors and eigenvalues (eigen from German for inherent) can

be used to gain insight into the dominant direction in which the Matrix A is changing the

underlying vector space.

A.2 The eigenvectors of a simple distribution

A spectral density matrix (SDM) is a form of covariance matrix and has several useful

properties, a few of which are listed here: 1. It is square, i.e. m=n

2. The Eigenvalues are all real and positive semidefinite

3. The eigenvectors are orthogonal

Consider a two dimensional distribution of observations. A sample of 1500 observations

of a 2D variable is plotted in Figure A.3. By taking each observationxi=[x1,ix2,i ] and
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Figure A.1: The effect of the 2x2 operator A on the unit square



193

Figure A.2: The effect of some randomly generated covariance matrices on the unit square
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Figure A.3: The effect of some randomly generated covariance matrices on the unit square
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calculating its outer product matrixxx∗, then averaging over all of these matrices, we obtain

an SDM. When the eigenvectors of the SDM are plotted (shown by black lines), one can

glean that the eigenvectors of an SDM carry information about the directions in which the

data are most broadly distributed, or tightly clustered.

Figure A.4: The eigenvectors for the SDM of the distribution given by the blue dots.
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Appendix B

Recommendations for future work

Following are some point form observations which relate to data in the PKD-SAO dataset.

Vertical Magnetic field measurements were available at both sites during much of the time

window considered. The vertical coil at SAO was damaged during almost all of 2004,

including during the 163 day window where much of the data processing shown in this

document was focused. Lacking a reference vertical coil, we chose to omit the vertical

measurements from this analysis. Analysis of the vertical field data may show other phe-

nomena not observed in the horizontal magnetometers, and also could be used to calculate

‘Tipper’ transfer functions [Simpson and Bahr2005]. We also had a vertical electrode op-

erating at Parkfield during the second half of 2004. Again, due to the lack the of a duplicate

measurement, the data from this channel were omitted from this study. A brief overview
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of the vertical electric field measurements can be found inKappler and Morrison(2006).

Both the electric and magnetic measurements could be used to identify the polarities of

transient events, particularly the anomalous field at PKD at period≈4s. A study of the

polarizations of certain observed signals would be helpful in understanding their nature. It

seems worthwhile to ask: is the polarization of the anomalous field always the same, since

quanttifying the stability of any polarization might indicate whether the source is moving

in space or not. The vertical field measurements already mentioned in this section could

prove valuable in such a polarization study.

In regards to signal processing, there is room for an exploratory data analysis project us-

ing the relatively recent technique of Independent Components Analysis [Hyvarnen et. al.

2001]. This technique is typically applied to datasets after treating them with PCA as in

chapter 7. The method seeks to decouple a multivariate time series into linear combina-

tions that are maximally statistically independent. It would be interesting to compare this

technique against PCA in terms of its ability to extract particular noise source signatures,

for example the BART signal. Additionally, a signal processing method, termed redun-

dancy analysis works similar to CC analysis, but extracts the maximally correlated linear

combinations of array channels under the constraint that each dimension must explain the

greatest portion of the variance of the data in the channel groupings. Further information

of the application of redundancy analysis can be found in [Hardle and Simar2007].

A more in-depth study of the modes of the MT field could also be carried out. If indeed it is
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true that the first two modes of the SDM constitute almost all of the natural field, it should

then follow that projecting the data onto the the 2 dimensional space spanned by the first

two dominant modes as defined in Chapter 7 should yield apparent resistivity estimates in

line with those obtained using the raw data. The precise relationship between the modes

identified in the CC method and those of the PC method could be undertaken. Given the

success of the technique of residual calculation by using a transfer function on only to two

dominant modes as used in chapter 10, one is encouraged to attempt a similar residual

calculation method based on the intersite canonical variates.

The co-seismic signals plotted in Figure 7.3 should be analyzed. Specifically, the magnetic

coseismic signals are very likely caused by motion of the coils in the Earth’s DC magnetic

field Kappler (2006), though no detailed model this supported by real data has been pub-

lished. More interesting is the source of the electric field coseismic signals. These cannot

be explained, to first order, by the motion of the wire in the Earth’s DC magnetic field.

Instead, the source of these signals could be very local electrode noise. There may also be

streaming potential signals of the kind discussed by [Nourbehecht, 1963] and [Onsager,

1931]. A study of coseismic electrode effects is necessary in order to pursue field research

in electrical monitoring during hydro-fracture [Cuevas)(personal communication)].

It is absolutely essential in any future continuation of this monitoring, or proposed augmen-

tation of the array, that sites be maintained regularly, and that detailed logs be kept which

document changes in site configuration and instrumentation. It is clear that the health of
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the system needs to be monitored in real time, by qualified and available technical support

staff so that these gaps can be reduced, should another long term monitoring project be

undertaken. Without these sorts of records we are left to speculate as to the causes of the

signals recorded in, for example, Figures 4.25-4.33.


